【題目】如圖,△ABC中,∠BAC=100°,DF,EG分別是AB,AC的垂直平分線,則∠DAE等于( )

A.50°
B.45°
C.30°
D.20°

【答案】D
【解析】根據(jù)線段的垂直平分線性質(zhì),可得AD=BD,AE=CE。故∠EAC=∠ECA,∠ABD=∠BAD。
因?yàn)椤螧AC=100°,∠ABD+∠ACE=180°-100°=80°,
∴∠DAE=100°-∠BAD-∠EAC=20°。
所以答案是:D
【考點(diǎn)精析】掌握線段垂直平分線的判定和三角形的內(nèi)角和外角是解答本題的根本,需要知道和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上;三角形的三個(gè)內(nèi)角中,只可能有一個(gè)內(nèi)角是直角或鈍角;直角三角形的兩個(gè)銳角互余;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】m+n=2,mn=1,則m2+n2=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC是邊長(zhǎng)3cm的等邊三角形,動(dòng)點(diǎn)P、Q同時(shí)從A、B兩點(diǎn)出發(fā),分別沿AB、BC方向勻速移動(dòng),它們的速度都是1cm/s,當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P、Q兩點(diǎn)停止運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)動(dòng)點(diǎn)P、Q同時(shí)運(yùn)動(dòng)2s時(shí),則BP=cm,BQ=cm.
(2)當(dāng)動(dòng)點(diǎn)P、Q同時(shí)運(yùn)動(dòng)t(s)時(shí),分別用含有t的式子表示;BP=cm,BQ=cm.
(3)當(dāng)t為何值時(shí),△PBQ是直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】-3+3=( )
A.0
B.6
C.3
D.-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.
(1)求證:△ADC≌△CEB.
(2)AD=6cm,DE=4cm,求BE的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若n邊形的每一個(gè)外角都等于60°,則n=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)P(m3,m1)x軸上,則點(diǎn)P的坐標(biāo)為( )

A. (0,-2) B. (2,0) C. (40) D. (0,-4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)ω是一個(gè)平面圖形,如果用直尺和圓規(guī)經(jīng)過有限步作圖(簡(jiǎn)稱尺規(guī)作圖),畫出一個(gè)正方形與ω的面積相等(簡(jiǎn)稱等積),那么這樣的等積轉(zhuǎn)化稱為ω的“化方”.

(1)閱讀填空

如圖①,已知矩形ABCD,延長(zhǎng)AD到E,使DE=DC,以AE為直徑作半圓.延長(zhǎng)CD交半圓于點(diǎn)H,以DH為邊作正方形DFGH,則正方形DFGH與矩形ABCD等積.

理由:連接AH,EH.

∵AE為直徑,∴∠AHE=90°,∴∠HAE+∠HEA=90°.

∵DH⊥AE,∴∠ADH=∠EDH=90°

∴∠HAD+∠AHD=90°

∴∠AHD=∠HED,∴△ADH∽

,即DH2=AD×DE.

又∵DE=DC

∴DH2= ,即正方形DFGH與矩形ABCD等積.

(2)操作實(shí)踐

平行四邊形的“化方”思路是,先把平行四邊形轉(zhuǎn)化為等積的矩形,再把矩形轉(zhuǎn)化為等積的正方形.

如圖②,請(qǐng)用尺規(guī)作圖作出與ABCD等積的矩形(不要求寫具體作法,保留作圖痕跡).

(3)解決問題三角形的“化方”思路是:先把三角形轉(zhuǎn)化為等積的 (填寫圖形名稱),再轉(zhuǎn)化為等積的正方形.

如圖③,△ABC的頂點(diǎn)在正方形網(wǎng)格的格點(diǎn)上,請(qǐng)作出與△ABC等積的正方形的一條邊(不要求寫具體作法,保留作圖痕跡,不通過計(jì)算△ABC面積作圖).

(4)拓展探究

n邊形(n>3)的“化方”思路之一是:把n邊形轉(zhuǎn)化為等積的n﹣1邊形,…,直至轉(zhuǎn)化為等積的三角形,從而可以化方.

如圖④,四邊形ABCD的頂點(diǎn)在正方形網(wǎng)格的格點(diǎn)上,請(qǐng)作出與四邊形ABCD等積的三角形(不要求寫具體作法,保留作圖痕跡,不通過計(jì)算四邊形ABCD面積作圖).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題
(1)已知 是有理數(shù)且滿足: 是-27的立方根, ,求 的值;
(2)已知 ,求 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案