已知,如圖,AB是半圓O的直徑,點(diǎn)C是半圓上的一點(diǎn),過點(diǎn)C作CD⊥AB于D,AC=2cm.AD:DB=4:1,求AD的長.

【答案】分析:連接BC,構(gòu)造直徑所對的圓周角是直角,發(fā)現(xiàn)直角三角形,根據(jù)射影定理求解.
解答:解:連接BC.
∵AB是半圓O的直徑,
∴∠ACB=90°.
∵CD⊥AB,
∴∠ADC=90°.
∴∠ACB=∠ADC.
∵∠A=∠A,
∴△ACD∽△ABC.

設(shè)DB=xcm,則AD=4xcm,AB=5xcm.

即5x×4x=(22
解得x=
∴AD=4cm.
點(diǎn)評:此題考查了圓周角定理和相似三角形的性質(zhì),主要是熟練掌握射影定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,AB為⊙O的直徑,C、D是半圓弧上的兩點(diǎn),E是AB上除O外的一點(diǎn),AC與DE相交于F.①
AD
=
CD
,②DE⊥AB,③AF=DF.
(1)寫出“以①②③中的任意兩個為條件,推出第三個(結(jié)論)”的一個正確命題,并加以證明;
(2)“以①②③中的任意兩個為條件,推出笫三個(結(jié)論)”可以組成多少個正確的命題?(不必說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•沈陽)已知,如圖,在平面直角坐標(biāo)系中,點(diǎn)A坐標(biāo)為(-2,0),點(diǎn)B坐標(biāo)為(0,2),點(diǎn)E為線段AB上的動點(diǎn)(點(diǎn)E不與點(diǎn)A,B重合),以E為頂點(diǎn)作∠OET=45°,射線ET交線段0B于點(diǎn)F,C為y軸正半軸上一點(diǎn),且OC=AB,拋物線y=-
2
x2+mx+n的圖象經(jīng)過A,C兩點(diǎn).
(1)求此拋物線的函數(shù)表達(dá)式;
(2)求證:∠BEF=∠AOE;
(3)當(dāng)△EOF為等腰三角形時,求此時點(diǎn)E的坐標(biāo);
(4)在(3)的條件下,當(dāng)直線EF交x軸于點(diǎn)D,P為(1)中拋物線上一動點(diǎn),直線PE交x軸于點(diǎn)G,在直線EF上方的拋物線上是否存在一點(diǎn)P,使得△EPF的面積是△EDG面積的(2
2
+1)倍?若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009-2010學(xué)年吉林省長春市外國語學(xué)校九年級(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知:如圖,AB為⊙O的直徑,C、D是半圓弧上的兩點(diǎn),E是AB上除O外的一點(diǎn),AC與DE相交于F.①,②DE⊥AB,③AF=DF.
(1)寫出“以①②③中的任意兩個為條件,推出第三個(結(jié)論)”的一個正確命題,并加以證明;
(2)“以①②③中的任意兩個為條件,推出笫三個(結(jié)論)”可以組成多少個正確的命題?(不必說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《圓》(09)(解析版) 題型:解答題

(2003•綿陽)已知:如圖,AB為⊙O的直徑,C、D是半圓弧上的兩點(diǎn),E是AB上除O外的一點(diǎn),AC與DE相交于F.①,②DE⊥AB,③AF=DF.
(1)寫出“以①②③中的任意兩個為條件,推出第三個(結(jié)論)”的一個正確命題,并加以證明;
(2)“以①②③中的任意兩個為條件,推出笫三個(結(jié)論)”可以組成多少個正確的命題?(不必說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年四川省綿陽市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•綿陽)已知:如圖,AB為⊙O的直徑,C、D是半圓弧上的兩點(diǎn),E是AB上除O外的一點(diǎn),AC與DE相交于F.①,②DE⊥AB,③AF=DF.
(1)寫出“以①②③中的任意兩個為條件,推出第三個(結(jié)論)”的一個正確命題,并加以證明;
(2)“以①②③中的任意兩個為條件,推出笫三個(結(jié)論)”可以組成多少個正確的命題?(不必說明理由)

查看答案和解析>>

同步練習(xí)冊答案