如圖,已知拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)是C(2,-1),與x軸交于點(diǎn)A(1,0),其對(duì)稱軸與x軸相交于點(diǎn)F.
(1)求拋物線解析式;
(2)連接AC,過(guò)點(diǎn)A做AC的垂線交拋物線于點(diǎn)D,交對(duì)稱軸于E,求直線AD的解析式;
(3)在(2)的條件下,連接BD,若點(diǎn)P在x軸正半軸,且以A、E、P為頂點(diǎn)的三角形與△ABD相似,求出所有滿足條件的P點(diǎn)坐標(biāo).

解:(1)∵已知拋物線y=ax2+bx+c的頂點(diǎn)坐標(biāo)是C(2,-1),
∴設(shè)該拋物線解析式為y=a(x-2)2-1(a≠0).
把點(diǎn)A(1,0)代入,
解得a=1,
∴該函數(shù)解析式為:y=(x-2)2-1.(或y=x2-4x+3).

(2)∵由(1)知,該函數(shù)解析式為:y=(x-2)2-1=(x-1)(x-3),
即y=(x-1)(x-3),
∴A(1,0).
∵頂點(diǎn)坐標(biāo)是C(2,-1),CF是對(duì)稱軸,
∴AF=CF=1,∠AFC=90°,
∴∠FAC=45°,
∵AC⊥AD,
∴∠DAB=45°,故可設(shè)直線AD的解析式為y=x+b.
把點(diǎn)A(1,0)代入,
解得b=-1,
∴直線AD的解析式為y=x-1.

(3)∵由(2)知,∠DAB=45°,即∠EAF=45°,
∴在直角△AEF中,∠EAF=∠AEF=45°,
∴AF=EF=1,
∴AE=,AB=2.
∵點(diǎn)D的拋物線y=x2-4x+3與直線ADy=x-1的交點(diǎn),
,
解得,(不合題意,舍去),或,
∴D(4,3),
∴AD=3,BD=
①如圖1,當(dāng)△ABD∽△AEP時(shí),
=,即=,
解得AP=3,
∴P(4,0);
②如圖2,當(dāng)△ABD∽△APE時(shí),=,即=,解得:AP=,∴P(,0);
③如圖3,當(dāng)△ABD∽△PAE時(shí),=,即=,解得,AP=,∴P(1-,0).
綜上所述,滿足條件的點(diǎn)P的坐標(biāo)是(4,0)、(,0)和(1-,0).
分析:(1)可設(shè)該拋物線解析式為頂點(diǎn)式y(tǒng)=a(x-2)2-1.把點(diǎn)A的坐標(biāo)代入來(lái)求a的值即可;
(2)根據(jù)點(diǎn)A、C的坐標(biāo)求得∠FAC=45°,則∠DAB=45°,故可設(shè)直線AD的解析式為y=x+b.把點(diǎn)A的坐標(biāo)代入并求得b的值;
(3)以A、E、P為頂點(diǎn)的三角形與△ABD相似,對(duì)于這兩個(gè)三角形的對(duì)應(yīng)角與對(duì)應(yīng)邊沒(méi)有明確的情況下,需要分類討論:①如圖1,當(dāng)△ABD∽△AEP時(shí);②如圖2,當(dāng)△ABD∽△APE時(shí);③如圖3,當(dāng)△ABD∽△PAE時(shí).根據(jù)這些相似三角形的對(duì)應(yīng)邊成比例可以求得線段AP的長(zhǎng)度.
點(diǎn)評(píng):本題考查了二次函數(shù)綜合題.其中涉及到的知識(shí)點(diǎn)有待定系數(shù)法求一次函數(shù)、二次函數(shù)解析式,相似三角形的判定與性質(zhì).第(3)小題中,用到了分類討論的數(shù)學(xué)思想,難點(diǎn)在于考慮問(wèn)題要全面,做到不重不漏.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線與x軸交于A(-1,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)精英家教網(wǎng)C(0,3).
(1)求拋物線的解析式;
(2)求直線BC的函數(shù)解析式;
(3)在拋物線上,是否存在一點(diǎn)P,使△PAB的面積等于△ABC的面積,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
(4)點(diǎn)Q是直線BC上的一個(gè)動(dòng)點(diǎn),若△QOB為等腰三角形,請(qǐng)寫(xiě)出此時(shí)點(diǎn)Q的坐標(biāo).(可直接寫(xiě)出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為x=1,且拋物線經(jīng)過(guò)A(-1,0)精英家教網(wǎng)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)在拋物線的對(duì)稱軸x=1上求一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,并求出此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•衡陽(yáng))如圖,已知拋物線經(jīng)過(guò)A(1,0),B(0,3)兩點(diǎn),對(duì)稱軸是x=-1.
(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度在線段OA上運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)M從O點(diǎn)出發(fā)以每秒3個(gè)單位長(zhǎng)度的速度在線段OB上運(yùn)動(dòng),過(guò)點(diǎn)Q作x軸的垂線交線段AB于點(diǎn)N,交拋物線于點(diǎn)P,設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
①當(dāng)t為何值時(shí),四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=1,且拋物線經(jīng)過(guò)A(-1,0)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)點(diǎn)P是拋物線對(duì)稱軸上一點(diǎn),若△PAB∽△OBC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線y=ax2+bx+c的頂點(diǎn)是(-1,-4),且與x軸交于A、B(1,0)兩點(diǎn),交y軸于點(diǎn)C;
(1)求此拋物線的解析式;
(2)①當(dāng)x的取值范圍滿足條件
-2<x<0
-2<x<0
時(shí),y<-3;
     ②若D(m,y1),E(2,y2)是拋物線上兩點(diǎn),且y1>y2,求實(shí)數(shù)m的取值范圍;
(3)直線x=t平行于y軸,分別交線段AC于點(diǎn)M、交拋物線于點(diǎn)N,求線段MN的長(zhǎng)度的最大值;
(4)若以拋物線上的點(diǎn)P為圓心作圓與x軸相切時(shí),正好也與y軸相切,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案