【題目】如圖,光明中學(xué)一教學(xué)樓頂上豎有一塊高為AB的宣傳牌,點(diǎn)E和點(diǎn)D分別是教學(xué)樓底部和外墻上的一點(diǎn)(A,B,D,E在同一直線上),小紅同學(xué)在距E點(diǎn)9米的C處測(cè)得宣傳牌底部點(diǎn)B的仰角為67°,同時(shí)測(cè)得教學(xué)樓外墻外點(diǎn)D的仰角為30°,從點(diǎn)C沿坡度為1∶的斜坡向上走到點(diǎn)F時(shí),DF正好與水平線CE平行.
(1)求點(diǎn)F到直線CE的距離(結(jié)果保留根號(hào));
(2)若在點(diǎn)F處測(cè)得宣傳牌頂部A的仰角為45°,求出宣傳牌AB的高度(結(jié)果精確到0.01).(注:sin67°≈0.92,tan67°≈2.36,≈1.41,≈1.73)
【答案】(1) 3米 (2) 1.95米
【解析】
(1)利用正切函數(shù)定義解三角形求DE長(zhǎng)度.(2)利用坡度定義,解直角三角形.
解:(1)過(guò)點(diǎn)F作FH⊥CE于H.∵FH∥DE,DF∥HE,∠FHE=90°,∴四邊形FHED是矩形,則FH=DE,在Rt△CDE中,DE=CE·tan∠DCE=9×tan30°=3(米),∴FH=DE=3(米).答:點(diǎn)F到CE的距離為3米
(2)∵CF的坡度為1∶,∴在Rt△FCH中,CH=FH=9(米),∴EH=DF=18(米),在Rt△BCE中,BE=CE·tan∠BCE=9×tan67°≈21.24(米),∴AB=AD+DE-BE=18+3-21.24≈1.95(米)
答:宣傳牌AB的高度約為1.95米
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩班各推選10名同學(xué)進(jìn)行投籃比賽,按照比賽規(guī)則,每人各投了10個(gè)球,兩個(gè)班選手的進(jìn)球數(shù)統(tǒng)計(jì)如表,請(qǐng)根據(jù)表中數(shù)據(jù)解答下列問(wèn)題
進(jìn)球數(shù)/個(gè) | 10 | 9 | 8 | 7 | 6 | 5 |
甲 | 1 | 1 | 1 | 4 | 0 | 3 |
乙 | 0 | 1 | 2 | 5 | 0 | 2 |
(1)分別寫(xiě)出甲、乙兩班選手進(jìn)球數(shù)的平均數(shù)、中位數(shù)與眾數(shù);
(2)如果要從這兩個(gè)班中選出一個(gè)班級(jí)參加學(xué)校的投籃比賽,爭(zhēng)取奪得總進(jìn)球團(tuán)體的第一名,你認(rèn)為應(yīng)該選擇哪個(gè)班?如果要爭(zhēng)取個(gè)人進(jìn)球數(shù)進(jìn)入學(xué)校前三名,你認(rèn)為應(yīng)該選擇哪個(gè)班?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)與軸交點(diǎn)的橫坐標(biāo)為,,則對(duì)于下列結(jié)論:
①當(dāng)時(shí),;
②方程有兩個(gè)不相等的實(shí)數(shù)根,;
③.
其中正確的結(jié)論有________(只需填寫(xiě)序號(hào)即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,C是線段AB上一點(diǎn),分別以AC.BC為邊作等邊△DAC和等邊△ECB,AE與BD.CD相交于點(diǎn)F、G,CE與BD相交于點(diǎn)H.
(1)求證:△ACE≌△DCB;
(2)求∠AFB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD是BC上的高,tanB=cos∠DAC.
(1)求證:AC=BD;
(2)若sin∠C=,BC=12,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)為6,E,F分別是AB、BC邊上的點(diǎn),且∠EDF=45°,將△DAE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到△DCM.
(1)求證:EF=MF;
(2)若AE=2,求FC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一般地,“任意三角形都是自相似圖形”,只要順次連接三角形各邊中點(diǎn),則可將原三角形分割為四個(gè)都與它自己相似的小三角形.我們把(圖乙)第一次順次連接各邊中點(diǎn)所進(jìn)行的分割,稱(chēng)為階分割(如圖);把階分割得出的個(gè)三角形再分別順次連接它的各邊中點(diǎn)所進(jìn)行的分割,稱(chēng)為階分割(如圖)…,依此規(guī)則操作下去.階分割后得到的每一個(gè)小三角形都是全等三角形(為正整數(shù)),設(shè)此時(shí)小三角形的面積為.請(qǐng)寫(xiě)出一個(gè)反映,,之間關(guān)系的等式________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D、E分別在AB、AC上,BE、CD相交于點(diǎn)O.
(1)若BD=CE,試說(shuō)明:OB=OC.
(2)若BC=10,BC邊上的中線AM=12,試求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,的垂直平分線交于,交于,的垂直平分線正好經(jīng)過(guò)點(diǎn),與相交于點(diǎn).求的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com