【題目】已知直線l1:y=﹣2x+5和直線l2:y=x﹣4,直線l1與y軸交于點(diǎn)A,直線l2與y軸交于點(diǎn)B.
(1)求兩條直線l1和l2的交點(diǎn)C的坐標(biāo);
(2)求兩條直線與y軸圍成的三角形的面積;
(3)已知點(diǎn)D是y軸上一點(diǎn),若△BCD為等腰直角三角形,直接寫(xiě)出D點(diǎn)坐標(biāo).
【答案】(1)(3,﹣1);(2);(3) (0,﹣1)或(0,2)
【解析】
(1)解方程組即可得到兩條直線l1和l2的交點(diǎn)C的坐標(biāo);
(2)根據(jù)點(diǎn)C為(3,﹣1),直線l1和l2與y軸的交點(diǎn)分別為A(0,5)、B(0,﹣4),即可得到兩條直線與y軸圍成的三角形的面積;
(3)分兩種情況,根據(jù)函數(shù)圖像及等腰直角三角形的特點(diǎn)即可求解.
解:(1)由題意得,
解方程組得
∴l1和l2的交點(diǎn)C為(3,﹣1);
(2)如圖,過(guò)點(diǎn)C作CE⊥y軸于E,則CE=3.
在y=﹣2x+5中,令x=0,則y=5,
在y=x﹣4中,令x=0,則y=﹣4,
∴直線l1和l2與y軸的交點(diǎn)分別為A(0,5)、B(0,﹣4),
則===;
(3)分兩種情況討論:當(dāng)∠BDC=90°時(shí),點(diǎn)D與點(diǎn)E重合,即D(0,﹣1);
當(dāng)∠BCD=90°時(shí),BE=DE=3,DO=3﹣1=2,即D(0,2);
∴D點(diǎn)坐標(biāo)為(0,﹣1)或(0,2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是圓O的直徑,弦CD⊥AB,垂足為H,與AC平行的圓O的一條切線交CD的延長(zhǎng)線于點(diǎn)M,交AB的延長(zhǎng)線于點(diǎn)E,切點(diǎn)為F,連接AF交CD于點(diǎn)N.
(1)求證:CA=CN;
(2)連接DF,若cos∠DFA=,AN=,求圓O的直徑的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商品的進(jìn)價(jià)為每件50元,售價(jià)為每件60元,每天可賣(mài)出190件;如果每件商品的售價(jià)每上漲1元,則每天少賣(mài)10件,設(shè)每件商品的售價(jià)上漲x元(x為正整數(shù)),每天的銷(xiāo)售利潤(rùn)為y元.
(1)求y關(guān)于x的關(guān)系式;
(2)每件商品的售價(jià)定為多少元時(shí),每天的利潤(rùn)恰為1980元?
(3)每件商品的售價(jià)定為多少元時(shí),每天可獲得最大利潤(rùn)?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某游泳館每年夏季推出兩種游泳付費(fèi)方式,方式一:先購(gòu)買(mǎi)會(huì)員證,每張會(huì)員證100元,只限本人當(dāng)年使用,憑證游泳每次再付費(fèi)5元;方式二:不購(gòu)買(mǎi)會(huì)員證,每次游泳付費(fèi)9元.
設(shè)小明計(jì)劃今年夏季游泳次數(shù)為x(x為正整數(shù)).
(I)根據(jù)題意,填寫(xiě)下表:
游泳次數(shù) | 10 | 15 | 20 | … | x |
方式一的總費(fèi)用(元) | 150 | 175 | ______ | … | ______ |
方式二的總費(fèi)用(元) | 90 | 135 | ______ | … | ______ |
(Ⅱ)若小明計(jì)劃今年夏季游泳的總費(fèi)用為270元,選擇哪種付費(fèi)方式,他游泳的次數(shù)比較多?
(Ⅲ)當(dāng)x>20時(shí),小明選擇哪種付費(fèi)方式更合算?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道對(duì)于x軸上的任意兩點(diǎn)A(x1,0),B(x2,0),有AB=|x1﹣x2|,而對(duì)于平面直角坐標(biāo)系中的任意兩點(diǎn)P1(x1,y1),P2(x2,y2),我們把|x1﹣x2|+|y1﹣y2|稱為Pl,P2兩點(diǎn)間的直角距離,記作d(P1,P2),即d(P1,P2)=|x1﹣x2|+|y1﹣y2|.
(1)已知O為坐標(biāo)原點(diǎn),若點(diǎn)P坐標(biāo)為(1,3),則d(O,P)= ;
(2)已知O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P(x,y)滿足d(O,P)=2,請(qǐng)寫(xiě)出x與y之間滿足的關(guān)系式,并在所給的直角坐標(biāo)系中畫(huà)出所有符合條件的點(diǎn)P所組成的圖形;
(3)試求點(diǎn)M(2,3)到直線y=x+2的最小直角距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A是∠MON邊OM上一點(diǎn),AE∥ON.
(1)在圖中作∠MON的角平分線OB(要求用尺規(guī)),交AE于點(diǎn)B;過(guò)點(diǎn)A畫(huà)OB的垂線,垂足為點(diǎn)D,交ON于點(diǎn)C,連接CB,將圖形補(bǔ)充完整.
(2)判斷四邊形OABC的形狀,并證明你的結(jié)論.
解:四邊形OABC是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年9月,某手機(jī)公司發(fā)布了新款智能手機(jī),為了調(diào)查某小區(qū)業(yè)主對(duì)該款手機(jī)的購(gòu)買(mǎi)意向,該公司在某小區(qū)隨機(jī)對(duì)部分業(yè)主進(jìn)行了問(wèn)卷調(diào)查,規(guī)定每人只能從A類(立刻去搶購(gòu))、B類(降價(jià)后再去買(mǎi))、C類(猶豫中)、D類(肯定不買(mǎi))這四類中選一類,并制成了以下兩幅不完整的統(tǒng)計(jì)圖,由圖中所給出的信息解答下列問(wèn)題:
(1)扇形統(tǒng)計(jì)圖中B類對(duì)應(yīng)的百分比為 %,請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若該小區(qū)共有4000人,請(qǐng)你估計(jì)該小區(qū)大約有多少人立刻去搶購(gòu)該款手機(jī).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:
小明遇到這樣一個(gè)問(wèn)題:如圖1,在△ABC中,DE∥BC分別交AB于D,交AC于E.已知CD⊥BE,CD=3,BE=4,求BC+DE的值.
小明發(fā)現(xiàn),過(guò)點(diǎn)E作EF∥DC,交BC延長(zhǎng)線于點(diǎn)F,構(gòu)造△BEF,經(jīng)過(guò)推理和計(jì)算能夠使問(wèn)題得到解決(如圖2).
(1)請(qǐng)按照上述思路完成小明遇到的這個(gè)問(wèn)題
(2)參考小明思考問(wèn)題的方法,解決問(wèn)題:
如圖3,已知ABCD和矩形ABEF,AC與DF交于點(diǎn)G,AC=BF=DF,求∠DGC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)青化工廠與A、B兩地有公路、鐵路相連.這家工廠從A地購(gòu)買(mǎi)一批每噸1000元的原料運(yùn)回工廠,制成每噸8000元的產(chǎn)品運(yùn)到B地.已知公路運(yùn)價(jià)為1.5元/(噸·千米),鐵路運(yùn)價(jià)為1.2元/(噸·千米),且這兩次運(yùn)輸共支出公路運(yùn)輸費(fèi)15000元,鐵路運(yùn)輸費(fèi)97200元.
求:(1)該工廠從A地購(gòu)買(mǎi)了多少噸原料?制成運(yùn)往B地的產(chǎn)品多少噸?
(2)這批產(chǎn)品的銷(xiāo)售款比原料費(fèi)與運(yùn)輸費(fèi)的和多多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com