若四邊形的一組對(duì)邊中點(diǎn)的連線的長(zhǎng)為d,另一組對(duì)邊的長(zhǎng)分別為a、b,則d與的大小關(guān)系是   
【答案】分析:設(shè)ABCD,取AD=a,BC=b,取AC中點(diǎn)G,AB 中點(diǎn)E,CD中點(diǎn)F,EG=b,F(xiàn)G=a,兩邊之和大于第三邊,所以BG+GF>EF,若AD,BC平行,相等則有a+b=d.
解答:解:設(shè)ABCD,取AD=a,BC=b,取AC中點(diǎn)G,AB 中點(diǎn)E,CD中點(diǎn)F,連接EG,GF,AC,
∴EG=b,GF=a,
在△EGF中,EG+GF>EF,
a+b>d,
若AD,BC平行,相等,則E、G、F正好在一條直線上,
則有a+b=d,
∴d與的大小關(guān)系是d≤
故答案為:d≤
點(diǎn)評(píng):此題主要考查三角形的中位線和三角形三邊關(guān)系等知識(shí)點(diǎn),此題的關(guān)鍵是設(shè)ABCD,取AD=a,BC=b,取AC中點(diǎn)G,AB 中點(diǎn)E,CD中點(diǎn)F,連接EG,GF,AC,有一定難度,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•連云港)小明在一次數(shù)學(xué)興趣小組活動(dòng)中,對(duì)一個(gè)數(shù)學(xué)問(wèn)題作如下探究:
問(wèn)題情境:如圖1,四邊形ABCD中,AD∥BC,點(diǎn)E為DC邊的中點(diǎn),連接AE并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)F,求證:S四邊形ABCD=S△ABF(S表示面積)

問(wèn)題遷移:如圖2:在已知銳角∠AOB內(nèi)有一個(gè)定點(diǎn)P.過(guò)點(diǎn)P任意作一條直線MN,分別交射線OA、OB于點(diǎn)M、N.小明將直線MN繞著點(diǎn)P旋轉(zhuǎn)的過(guò)程中發(fā)現(xiàn),△MON的面積存在最小值,請(qǐng)問(wèn)當(dāng)直線MN在什么位置時(shí),△MON的面積最小,并說(shuō)明理由.

實(shí)際應(yīng)用:如圖3,若在道路OA、OB之間有一村莊Q發(fā)生疫情,防疫部門(mén)計(jì)劃以公路OA、OB和經(jīng)過(guò)防疫站P的一條直線MN為隔離線,建立一個(gè)面積最小的三角形隔離區(qū)△MON.若測(cè)得∠AOB=66°,∠POB=30°,OP=4km,試求△MON的面積.(結(jié)果精確到0.1km2)(參考數(shù)據(jù):sin66°≈0.91,tan66°≈2.25,
3
≈1.73)
拓展延伸:如圖4,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A、B、C、P的坐標(biāo)分別為(6,0)(6,3)(
9
2
,
9
2
)、(4、2),過(guò)點(diǎn)p的直線l與四邊形OABC一組對(duì)邊相交,將四邊形OABC分成兩個(gè)四邊形,求其中以點(diǎn)O為頂點(diǎn)的四邊形面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

下列命題中,正確的個(gè)數(shù)是( 。
①若三條線段的比為1:1:
2
,則它們組成一個(gè)等腰直角三角形;
②兩條對(duì)角線相等的平行四邊形是矩形;
③對(duì)角線互相垂直的四邊形是菱形;
④有兩個(gè)角相等的梯形是等腰梯形;
⑤一條直線與矩形的一組對(duì)邊相交,必分矩形為兩個(gè)直角梯形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年初中畢業(yè)升學(xué)考試(江蘇連云港卷)數(shù)學(xué)(帶解析) 題型:解答題

小明在一次數(shù)學(xué)興趣小組活動(dòng)中,對(duì)一個(gè)數(shù)學(xué)問(wèn)題作如下探究:
問(wèn)題情境:如圖1,四邊形ABCD中,AD∥BC,點(diǎn)E為DC邊的中點(diǎn),連結(jié)AE并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)F.求證:S四邊形ABCD=SABF.(S表示面積)

問(wèn)題遷移:如圖2,在已知銳角∠AOB內(nèi)有一定點(diǎn)P.過(guò)點(diǎn)P任意作一條直線MN,分別交射線OA、OB于點(diǎn)M、N.小明將直線MN繞著點(diǎn)P旋轉(zhuǎn)的過(guò)程中發(fā)現(xiàn),△MON的面積存在最小值.請(qǐng)問(wèn)當(dāng)直線MN在什么位置時(shí),△MON的面積最小,并說(shuō)明理由.

實(shí)際應(yīng)用:如圖3,若在道路OA、OB之間有一村莊Q發(fā)生疫情,防疫部分計(jì)劃以公路OA、OB和經(jīng)過(guò)防疫站的一條直線MN為隔離線,建立一個(gè)面積最小的三角形隔離區(qū)△MON.若測(cè)得∠AOB=66º,∠POB=30º,OP=4km,試求△MON的面積.(結(jié)果精確到0.1km2)(參考數(shù)據(jù):sin66º≈0.91,tan66º≈2.25,≈1.73)
拓展延伸:如圖4,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A、B、C、P的坐標(biāo)分別為(6,0)、(6,3)、、(4,2),過(guò)點(diǎn)P的直線l與四邊形OABC一組對(duì)邊相交,將四邊形OABC分成兩個(gè)四邊形,求其中以點(diǎn)O為頂點(diǎn)的四邊形的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年江蘇省連云港市中考數(shù)學(xué)試卷(解析版) 題型:解答題

小明在一次數(shù)學(xué)興趣小組活動(dòng)中,對(duì)一個(gè)數(shù)學(xué)問(wèn)題作如下探究:
問(wèn)題情境:如圖1,四邊形ABCD中,AD∥BC,點(diǎn)E為DC邊的中點(diǎn),連接AE并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)F,求證:S四邊形ABCD=S△ABF(S表示面積)

問(wèn)題遷移:如圖2:在已知銳角∠AOB內(nèi)有一個(gè)定點(diǎn)P.過(guò)點(diǎn)P任意作一條直線MN,分別交射線OA、OB于點(diǎn)M、N.小明將直線MN繞著點(diǎn)P旋轉(zhuǎn)的過(guò)程中發(fā)現(xiàn),△MON的面積存在最小值,請(qǐng)問(wèn)當(dāng)直線MN在什么位置時(shí),△MON的面積最小,并說(shuō)明理由.

實(shí)際應(yīng)用:如圖3,若在道路OA、OB之間有一村莊Q發(fā)生疫情,防疫部門(mén)計(jì)劃以公路OA、OB和經(jīng)過(guò)防疫站P的一條直線MN為隔離線,建立一個(gè)面積最小的三角形隔離區(qū)△MON.若測(cè)得∠AOB=66°,∠POB=30°,OP=4km,試求△MON的面積.(結(jié)果精確到0.1km2)(參考數(shù)據(jù):sin66°≈0.91,tan66°≈2.25,≈1.73)
拓展延伸:如圖4,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A、B、C、P的坐標(biāo)分別為(6,0)(6,3)()、(4、2),過(guò)點(diǎn)p的直線l與四邊形OABC一組對(duì)邊相交,將四邊形OABC分成兩個(gè)四邊形,求其中以點(diǎn)O為頂點(diǎn)的四邊形面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:同步題 題型:操作題

要在長(zhǎng)方形的木板上截一個(gè)平行四邊形,使平行四邊形的一組對(duì)邊在長(zhǎng)方形木板的邊緣上,另一組對(duì)邊中已截出一邊AB(如圖),另一邊必須經(jīng)過(guò)C點(diǎn)。現(xiàn)只給你一個(gè)圓規(guī)和一把沒(méi)有刻度的直尺,你能解決這個(gè)問(wèn)題嗎?若能,畫(huà)出缺的一邊,并給出合理解釋?zhuān)蝗舨荒埽?qǐng)說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案