【題目】如圖,已知在△ABC中,PAB上一點,連接CP,以下條件中不能判定△ACP∽△ABC的是( 。

A. B. C. D.

【答案】C

【解析】

A、加一公共角,根據(jù)兩角對應(yīng)相等的兩個三角形相似可以得結(jié)論;

B、加一公共角,根據(jù)兩角對應(yīng)相等的兩個三角形相似可以得結(jié)論;

C、其夾角不相等,所以不能判定相似;

D、其夾角是公共角,根據(jù)兩邊的比相等,且夾角相等,兩三角形相似.

A、∵∠A=A,ACP=B,

∴△ACP∽△ABC,

所以此選項的條件可以判定ACP∽△ABC;

B、∵∠A=A,APC=ACB,

∴△ACP∽△ABC,

所以此選項的條件可以判定ACP∽△ABC;

C、

當(dāng)∠ACP=B時,ACP∽△ABC,

所以此選項的條件不能判定ACP∽△ABC;

D、,

又∠A=A,

∴△ACP∽△ABC,

所以此選項的條件可以判定ACP∽△ABC,

本題選擇不能判定ACP∽△ABC的條件,

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC 中,∠C90°,AB10cm,BC6cm,若動點 P 從點 C開始,按 C→A→B→C 的路徑運(yùn)動,且速度為每秒 1cm,設(shè)出發(fā)的時間為 t 秒.

1)出發(fā) 2 秒后,求△ABP 的周長.

2)當(dāng) t 為幾秒時,BP 平分∠ABC

3)另有一點 Q,從點 C 開始,按 C→B→A→C 的路徑運(yùn)動,且速度為每秒 2cm,若 P、Q 兩點同時出發(fā),當(dāng) P、Q 中有一點到達(dá)終點時,另一點也停止運(yùn)動.當(dāng) t 為何值時,直 PQ △ABC 的周長分成相等的兩部分?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+ca0)的圖象的對稱軸為直線x=﹣1,下列結(jié)論正確的有_____(填序號).

若圖象過點(﹣3y1)、(2,y2),則y1y2;

ac0

③2ab0;

b24ac0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示.(每個小方格都是邊長為1個單位長度的正方形)

(1)畫出△ABC關(guān)于原點對稱的△A'B'C';

(2)將△A'B'C'繞點C'順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△ABC″,并直接寫出此過程中線段C'A'掃過圖形的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P是菱形ABCD的對角線AC上的一個動點,過點P垂直于AC的直

線交菱形ABCD的邊于M、N兩點.設(shè)AC2,BD1APx,AMN的面積為y,則

y關(guān)于x的函數(shù)圖象大致形狀是【 】

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,EBC邊上一點.且BE=EC,BD,AE相交于點F.

(1)求△BEF的周長與△AFD的周長之比;

(2)若△BEF的面積S△BEF=6cm2.求△AFD的面積S△AFD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OABC是平行四邊形,以O(shè)為圓心,OA為半徑的圓交AB于點D,延長AO交⊙O于點E,連接CD、CE,若CE是⊙O的切線.

(1)求證:CD是⊙O的切線;

(2)若⊙O的半徑為4,OC=7,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由邊長為1的小正方形組成的格點中,建立如圖平面直角坐標(biāo)系,△ABC的三個頂點坐標(biāo)分別為A(﹣2,1),B(﹣4,5),C(﹣5,2).

(1)請作出△ABC關(guān)于y軸對稱的△A1B1C1

(2)畫出△ABC關(guān)于原點O成中心對稱的△A2B2C2;

(3)請你判斷△AA1A2與△CC1C2的相似比;若不相似,請直接寫出△AA1A2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)ykx+b與反比例函數(shù)y的圖象交于A(14),B(4,n)兩點.

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)直接寫出當(dāng)x0時,kx+b的解集.

(3)Px軸上的一動點,試確定點P并求出它的坐標(biāo),使PA+PB最。

查看答案和解析>>

同步練習(xí)冊答案