【題目】有一組互不全等的三角形,它們的邊長均為整數(shù),每個三角形有兩條邊的長分別為5和7.
(1)請寫出其中一個三角形的第三邊的長;
(2)設(shè)組中最多有n個三角形,求n的值;
(3)當(dāng)這組三角形個數(shù)最多時,從中任取一個,求該三角形周長為偶數(shù)的概率.

【答案】
(1)解:設(shè)三角形的第三邊為x,

∵每個三角形有兩條邊的長分別為5和7,

∴7﹣5<x<5+7,

∴2<x<12,

∴其中一個三角形的第三邊的長可以為10


(2)解:∵2<x<12,它們的邊長均為整數(shù),

∴x=3,4,5,6,7,8,9,10,11,

∴組中最多有9個三角形,

∴n=9


(3)解:∵當(dāng)x=4,6,8,10時,該三角形周長為偶數(shù),

又∵有9個三角形,

∴該三角形周長為偶數(shù)的概率是


【解析】(1)設(shè)三角形的第三邊為x,根據(jù)三角形的三邊關(guān)系列出不等式組,再解不等式組即可;(2)求出x的所有整數(shù)值,即可求出n的值;(3)先求出該三角形周長為偶數(shù)的所有情況,再除以總的個數(shù),即可求出答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=--x+8x軸,y軸分別交于點A,點B,點Dy軸的負(fù)半軸上,若將DAB沿直線AD折疊,點B恰好落在x軸正半軸上的點C處.

(1)AB的長和點C的坐標(biāo);

(2)求直線CD的表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在RtABC中,ACB=90°,M是邊AB的中點,連接CM并延長到點E,使得EM=AB,D是邊AC上一點,且AD=BC,聯(lián)結(jié)DE,求CDE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AC=BC,ACB=90°,D為ABC內(nèi)一點, BAD=15°,AD=AC,CEAD于E,且CE=5.

(1)求BC的長;

(2)求證:BD=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:A、OB三點在同一條直線上,過O點作射線OC,使∠AOC:∠BOC=1:2,將一直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.

(1)將圖1中的三角板繞點O按逆時針方向旋轉(zhuǎn)至圖2的位置,使得ON落在射線OB上,此時三角板旋轉(zhuǎn)的角度為   度;

(2)繼續(xù)將圖2中的三角板繞點O按逆時針方向旋轉(zhuǎn)至圖3的位置,使得ON在∠AOC的內(nèi)部.試探究∠AOM與∠NOC之間滿足什么等量關(guān)系,并說明理由;

(3)將圖1中的三角板繞點O按5°每秒的速度沿逆時針方向旋轉(zhuǎn)一周的過程中,當(dāng)直角三角板的直角邊OM所在直線恰好平分∠BOC時,時間t的值為  (直接寫結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,BA=BC,B=120°,線段AB的垂直平分線MNAC于點D,且AD=8cm.求:

(1)ADG的度數(shù);

(2)線段DC的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AE切⊙O于點E,AT交⊙O于點M,N,線段OE交AT于點C,OB⊥AT于點B,已知∠EAT=30°,AE=3 ,MN=2

(1)求∠COB的度數(shù);
(2)求⊙O的半徑R;
(3)點F在⊙O上( 是劣。褽F=5,把△OBC經(jīng)過平移、旋轉(zhuǎn)和相似變換后,使它的兩個頂點分別與點E,F(xiàn)重合.在EF的同一側(cè),這樣的三角形共有多少個?你能在其中找出另一個頂點在⊙O上的三角形嗎?請在圖中畫出這個三角形,并求出這個三角形與△OBC的周長之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個正方體的表面展開圖,請回答下列問題:

(1)與面B、C相對的面分別是   ;

(2)若Aa3+a2b+3,Ba2b﹣3,Ca3﹣1,D=﹣(a2b﹣6),且相對兩個面所表示的代數(shù)式的和都相等,求E、F分別代表的代數(shù)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=4,AC=6,ABC和ACB的平分線交于點E,過點E作MNBC分別交AB、AC于M、N,則AMN的周長為( 。

A. 10 B. 6 C. 4 D. 不確定

查看答案和解析>>

同步練習(xí)冊答案