【題目】在利用圖象法求方程x2=x+3的解x1,x2時(shí),下面是四位同學(xué)的解法:
甲:函數(shù)y=x2﹣x﹣3的圖象與x軸交點(diǎn)的橫坐標(biāo)是x1,x2
乙:函數(shù)y=x2與y=x+3的圖象交點(diǎn)的橫坐標(biāo)是x1,x2
丙:函數(shù)y=x2﹣3與y=x的圖象交點(diǎn)的橫坐標(biāo)是x1,x2
。汉瘮(shù)y=x2+1與y=x+4的圖象交點(diǎn)的橫坐標(biāo)是x1,x2
你認(rèn)為解法正確的同學(xué)有_____.
【答案】甲乙丙丁
【解析】
根據(jù)方程=x+3的解為、,即方程﹣x﹣3=0的兩個(gè)根為、,即可求解.
方程=+3的解為、,即方程﹣﹣3=0的兩個(gè)根為、,
甲:函數(shù)y=﹣﹣3的圖象與x軸交點(diǎn)的橫坐標(biāo)、,即方程﹣﹣3=0的兩個(gè)根為、,故甲正確;
乙:函數(shù)y=和y= +3的圖象交點(diǎn)的橫坐標(biāo)、,即方程﹣﹣3=0的兩個(gè)根為、,故乙正確;
丙:函數(shù)y=﹣3和y=的圖象交點(diǎn)的橫坐標(biāo)、,即方程﹣﹣3=0的兩個(gè)根為、,故丙正確;
。汉瘮(shù)y=+1和y= +4的圖象交點(diǎn)的橫坐標(biāo)、,即方程﹣﹣3=0的兩個(gè)根為、,故丁正確;
故答案為:甲乙丙。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線。
(1)求頂點(diǎn)坐標(biāo),對(duì)稱軸;
(2)取何值時(shí), 隨的增大而減小?
(3)取何值時(shí), =0; 取何值時(shí), >0; 取何值時(shí), <0 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:對(duì)于任意正實(shí)數(shù)a、b,∵≥0, ∴≥0,
∴≥,只有當(dāng)a=b時(shí),等號(hào)成立.
結(jié)論:在≥(a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥,只有當(dāng)a=b時(shí),a+b有最小值.
根據(jù)上述內(nèi)容,回答下列問(wèn)題:
若m>0,只有當(dāng)m= 時(shí),有最小值 .
思考驗(yàn)證:如圖1,AB為半圓O的直徑,C為半圓上任意一點(diǎn)(與點(diǎn)A、B不重合),過(guò)點(diǎn)C作CD⊥AB,垂足為D,AD=a,DB=b.
試根據(jù)圖形驗(yàn)證≥,并指出等號(hào)成立時(shí)的條件.
探索應(yīng)用:如圖2,已知A(-3,0),B(0,-4),P為雙曲線(x>0)上的任意一點(diǎn),過(guò)點(diǎn)P作PC⊥x軸于點(diǎn)C,PD⊥y軸于點(diǎn)D.求四邊形ABCD面積的最小值,并說(shuō)明此時(shí)四邊形ABCD的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了增強(qiáng)學(xué)生的環(huán)保意識(shí),某校組織了一次全校2000名學(xué)生都參加的“環(huán)保知識(shí)”考試,考題共10題.考試結(jié)束后,學(xué)校團(tuán)委隨機(jī)抽查部分考生的考卷,對(duì)考生答題情況進(jìn)行分析統(tǒng)計(jì),發(fā)現(xiàn)所抽查的考卷中答對(duì)題量最少為6題,并且繪制了如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖提供的信息解答以下問(wèn)題:
(1)本次抽查的樣本容量是 ;在扇形統(tǒng)計(jì)圖中,m= ,n= ,“答對(duì)8題”所對(duì)應(yīng)扇形的圓心角為 度;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)請(qǐng)根據(jù)以上調(diào)查結(jié)果,估算出該校答對(duì)不少于8題的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在中,點(diǎn)是的中點(diǎn),連接并延長(zhǎng),交的延長(zhǎng)線于點(diǎn).
(1)求證:.
(2)連接,,當(dāng)______時(shí),四邊形是正方形.請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y1=2x2+的頂點(diǎn)為M,直線y2=x,點(diǎn)P(n,0)為x軸上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線分別交拋物線y1=2x2+和直線y2=x于點(diǎn)A、點(diǎn)B
(1)直接寫出A、B兩點(diǎn)的坐標(biāo)(用含n的代數(shù)式表示)
(2)設(shè)線段AB的長(zhǎng)為d,求d關(guān)于n的函數(shù)關(guān)系式及d的最小值,并直接寫出此時(shí)線段OB與線段PM的位置關(guān)系和數(shù)量關(guān)系;
(3)已知二次函數(shù)y=ax2+bx+c(a,b,c為整數(shù)且a≠0),對(duì)一切實(shí)數(shù)x恒有x≤y≤2x2+,求a,b,c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若二次函數(shù)的圖象的頂點(diǎn)在的圖象上,則稱為的伴隨函數(shù),如是的伴隨函數(shù).
(1)若函數(shù)是的伴隨函數(shù),求的值;
(2)已知函數(shù)是的伴隨函數(shù).
①當(dāng)點(diǎn)(2,-2)在二次函數(shù)的圖象上時(shí),求二次函數(shù)的解析式;
②已知矩形,為原點(diǎn),點(diǎn)在軸正半軸上,點(diǎn)在軸正半軸上,點(diǎn)(6,2),當(dāng)二次函數(shù)的圖象與矩形有三個(gè)交點(diǎn)時(shí),求此二次函數(shù)的頂點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把球放在長(zhǎng)方體紙盒內(nèi),球的一部分露出盒外,其截面如圖所示,已知EF=CD=4 cm,則球的半徑長(zhǎng)是( )
A. 2cm B. 2.5cm C. 3cm D. 4cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知A(,y1),B(2,y2)為反比例函數(shù)圖像上的兩點(diǎn),動(dòng)點(diǎn)P(x,0)在x正半軸上運(yùn)動(dòng),當(dāng)線段AP與線段BP之差達(dá)到最大時(shí),點(diǎn)P的坐標(biāo)是( )
A. (,0) B. (1,0) C. (,0) D. (,0)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com