已知二次函數(shù)的圖象開口向上且不過原點(diǎn)0,頂點(diǎn)坐標(biāo)為(1,-2),與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,且滿足關(guān)系式OC2=OA•OB.
(1)求二次函數(shù)的解析式;
(2)求△ABC的面積.
解:(1)∵拋物線頂點(diǎn)坐標(biāo)為(1,-2),
設(shè)頂點(diǎn)式為y=a(x-1)
2-2=ax
2-2ax+a-2,A(x
1,0),B(x
2,0),
則x
1x
2=
,C(0,a-2),
由OC
2=OA•OB,得(a-2)
2=|x
1x
2|=|
|,即a
3-4a
2+4a=|a-2|,
當(dāng)0<a<2時,有a
3-4a
2+5a-2=0
即(a-1)
2(a-2)=0,
解得a
1=1或a
2=2(舍去)
由a=1得y=x
2-2x-1;
當(dāng)a>2時,有a
3-4a
2+3a+2=0
即(a-2)(a
2-2a-1)=0
解得a
1=2(舍去),a
2=1+
,a
3=1-
(舍去),
故a=1+
,y=(1+
)x
2-(2+2
)x+
-1,
故 所求二次函數(shù)解析式為:y=x
2-2x-1或y=(1+
)x
2-(2+2
)x+
-1;
(2)由S
△ABC=|AB|•|OC|,有兩種情況:
①當(dāng)y=x
2-2x-1時,
|AB|=|x
1-x
2|=
=2
,
又|OC|=1,故S
△ABC=
×2
×1=
;
②當(dāng)y=(1+
)x
2-(2+2
)x+
-1時,
|AB|=|x
1-x
2|=
=2
,
又|OC|=
-1,則
S
△ABC=
×2
×(
-1)=(
-1)
.
故所求△ABC的面積為(
-1)
或
.
分析:(1)已知頂點(diǎn)坐標(biāo)為(1,-2),可設(shè)頂點(diǎn)式為y=a(x-1)
2-2=ax
2-2ax+a-2,設(shè)A(x
1,0),B(x
2,0),則x
1x
2=
,C(0,a-2),由OC
2=OA•OB,將相應(yīng)點(diǎn)的坐標(biāo)代入,列方程求a,即可求二次函數(shù)解析式;
(2)根據(jù)二次函數(shù)解析式及AB=|x
1-x
2|,利用求根公式求AB,點(diǎn)C到線段AB的距離為高,可求△ABC的面積.
點(diǎn)評:本題考查了用待定系數(shù)法求二次函數(shù)解析式的方法.關(guān)鍵是根據(jù)條件確定拋物線解析式的形式,再求其中的待定系數(shù).一般式:y=ax
2+bx+c(a≠0);頂點(diǎn)式y(tǒng)=a(x-h)
2+k,其中頂點(diǎn)坐標(biāo)為(h,k);交點(diǎn)式y(tǒng)=a(x-x
1)(x-x
2),拋物線與x軸兩交點(diǎn)為(x
1,0),(x
2,0).