【題目】如圖,四邊形ABCD是正方形,點(diǎn)G是BC邊上任意一點(diǎn),DE⊥AG于點(diǎn)E,BF∥DE且交AG于點(diǎn)F.
(1)求證:AE=BF;
(2)如圖1,連接DF、CE,探究線段DF與CE的關(guān)系并證明;
(3)如圖2,若AB=,G為CB中點(diǎn),連接CF,直接寫出四邊形CDEF的面積.
【答案】(1)證明見解析;(2)DF=CE且DF⊥CE.理由見解析.(3)3.
【解析】
試題(1)根據(jù)垂直的定義和平行線的性質(zhì)求出∠AED=∠BFA=90°,根據(jù)正方形的性質(zhì)可得AB=AD,∠BAD=∠ADC=90°,再利用同角的余角相等求出∠BAF=∠ADE,然后利用“角角邊”證明△AFB和△DEA全等,根據(jù)全等三角形對應(yīng)邊相等可得AE=BF;
(2)根據(jù)同角的余角相等求出∠FAD=∠EDC,根據(jù)全等三角形對應(yīng)邊相等可得AF=DE,根據(jù)正方形的性質(zhì)可得AD=CD,然后利用“邊角邊”證明△FAD和△EDC全等,根據(jù)全等三角形對應(yīng)邊相等可得DF=CE,全等三角形對應(yīng)角相等可得∠ADF=∠DCE,再求出∠DCF+∠CDF=90°,然后根據(jù)垂直的定義證明即可;
(3)根據(jù)線段中點(diǎn)的定義求出BG,再利用勾股定理列式求出AG,然后利用△ABG的面積列出方程求出BF,再利用勾股定理列式求出AF,從而得到AE=EF,再根據(jù)線段垂直平分線上的點(diǎn)到兩端點(diǎn)的距離相等可得DF=AD,然后根據(jù)對角線互相垂直的四邊形的面積等于對角線乘積的一半列式計(jì)算即可得解.
試題解析:(1)證明:∵DE⊥AG于點(diǎn)E,BF∥DE且交AG于點(diǎn)F,
∴BF⊥AG于點(diǎn)F,
∴∠AED=∠BFA=90°,
∵四邊形ABCD是正方形,
∴AB=AD且∠BAD=∠ADC=90°,
∴∠BAF+∠EAD=90°,
∵∠EAD+∠ADE=90°,
∴∠BAF=∠ADE,
在△AFB和△DEA中,
∴△AFB≌△DEA(AAS),
∴BF=AE;
(2)DF=CE且DF⊥CE.
理由如下:∵∠FAD+∠ADE=90°,∠EDC+∠ADE=∠ADC=90°,
∴∠FAD=∠EDC,
∵△AFB≌△DEA,
∴AF=DE,
又∵四邊形ABCD是正方形,
∴AD=CD,
在△FAD和△EDC中,
∴△FAD≌△EDC(SAS),
∴DF=CE且∠ADF=∠DCE,
∵∠ADF+∠CDF=∠ADC=90°,
∴∠DCF+∠CDF=90°,
∴△FAD≌△EDC(SAS),
∴DF=CE且∠ADF=∠DCE,
∵∠ADF+∠CDF=∠ADC=90°,
∴∠DCF+∠CDF=90°,
∴DF⊥CE;
(3)∵AB=,G為CB中點(diǎn),
∴BG=BC=,
由勾股定理得,AG=
∵S△ABG=AG×BF=AB×BG
∴××BF=××
解得:BF=
由勾股定理得,AF=
∵△AFB≌△DEA,
∴AE=BF=
∴AE=EF=
∴DE垂直平分AF,
∴DF=AD=6,
由(2)知,DF=CE且DF⊥CE,
∴四邊形CDEF的面積=DFCE=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BC是⊙O的切線,D為⊙O上的一點(diǎn),CD=CB,延長CD交BA的延長線于點(diǎn)E,
(1)求證:CD為⊙O的切線;
(2)若EA=BO=2,求圖中陰影部分的面積(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個正比例函數(shù)與一個一次函數(shù)的圖象交于點(diǎn)A(3,4),其中一次函數(shù)與y軸交于B點(diǎn),且OA=OB.
(1)求這兩個函數(shù)的表達(dá)式;
(2)求△AOB的面積S.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、B都在數(shù)軸上,O為原點(diǎn).
(1)點(diǎn)B表示的數(shù)是_________________;
(2)若點(diǎn)B以每秒2個單位長度的速度沿數(shù)軸向右運(yùn)動,則2秒后點(diǎn)B表示的數(shù)是________;
(3)若點(diǎn)A、B分別以每秒1個單位長度、3個單位長度的速度沿數(shù)軸向右運(yùn)動,而點(diǎn)O不動,t秒后,A、B、O三個點(diǎn)中有一個點(diǎn)是另外兩個點(diǎn)為端點(diǎn)的線段的中點(diǎn),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】工業(yè)園區(qū)某機(jī)械廠的一個車間主要負(fù)責(zé)生產(chǎn)螺絲和螺母,該車間有工人44人,其中女生人數(shù)比男生人數(shù)的倍少人,每個工人平均每天可以生產(chǎn)螺絲個或者螺母個
(1)該車間有男生、女生各多少人?
(2)已知一個螺絲與兩個螺母配套,為了使每天生產(chǎn)的螺絲螺母恰好配套,應(yīng)該分配多少工人負(fù)責(zé)生產(chǎn)螺絲,多少工人負(fù)責(zé)生產(chǎn)螺母?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,正方形紙片ABCD的邊長為2,翻折∠B、∠D,使兩個直角的頂點(diǎn)重合于對角線BD上一點(diǎn)P、EF、GH分別是折痕(如圖2).設(shè)AE=x(0<x<2),給出下列判斷:①當(dāng)x=1時,點(diǎn)P是正方形ABCD的中心;②當(dāng)x=時,EF+GH>AC;③當(dāng)0<x<2時,六邊形AEFCHG面積的最大值是3;④當(dāng)0<x<2時,六邊形AEFCHG周長的值不變.其中正確的選項(xiàng)是( )
A. ①③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中,直線y=x+b與直線y=x交于點(diǎn)A(m,1).與y軸交于點(diǎn)B
(1)求m的值和點(diǎn)B的坐標(biāo);
(2)若點(diǎn)C在y軸上,且△ABC的面積是1,請直接寫出點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)生的學(xué)業(yè)負(fù)擔(dān)過重會嚴(yán)重影響學(xué)生對待學(xué)習(xí)的態(tài)度.為此我市教育部門對部分學(xué)校的八年級學(xué)生對待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個層級,A級:對學(xué)習(xí)很感興趣;B級:對學(xué)習(xí)較感興趣;C級:對學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計(jì)圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
(2)將圖①補(bǔ)充完整;
(3)求出圖②中C級所占的圓心角的度數(shù);
(4)根據(jù)抽樣調(diào)查結(jié)果,請你估計(jì)我市近8000名八年級學(xué)生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括A級和B級)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線分別交軸、軸于點(diǎn),直線與直線交于點(diǎn),點(diǎn)為軸上一動點(diǎn).
(1)求點(diǎn)的坐標(biāo);
(2)當(dāng)的值最小時,求此時點(diǎn)的坐標(biāo),并求的最小值;
(3)在平面直角坐標(biāo)系中是否存在點(diǎn),使以點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,若存在,求出點(diǎn)的坐標(biāo);若不存在,請說出理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com