【題目】如圖,在中, , 的角平分線,以為圓心, 為半徑作⊙

)求證: 是⊙的切線.

)已知交⊙于點(diǎn),延長交⊙于點(diǎn) ,求的值.

)在()的條件下,設(shè)⊙的半徑為,求的長.

【答案】(1)證明見解析;(2);(3).

【解析】試題分析:對于(1),過OOFABF,由角平分線上的點(diǎn)到角兩邊的距離相等即可得證;

對于(2),連接CE,結(jié)合角平分線的性質(zhì)和弦切角定理可證明ACE∽△ADC,可得=tanD,即可解答;

對于(3),先由勾股定理求得AE的長,再證明BOF∽△BAC,得,設(shè)BO=y,BF=z,列二元一次方程組即可解決問題.

試題解析:( )證明:作,

的角平分線, ,

,

是⊙的切線.

)連接,

的角平分線,

所對的弧于所對的弧是同弧,

,

)設(shè),在中,

由勾股定理得,解得,

, ,

,

,

設(shè) ,

,

,

解得,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】公共汽車上有20人,到達(dá)某站后,下車m人,上車n人,這時(shí)車上共有______人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道對于x軸上的任意兩點(diǎn)A(x1,0),B(x2,0),有AB=|x1﹣x2|,而對于平面直角坐標(biāo)系中的任意兩點(diǎn)P1(x1,y1),P2(x2,y2),我們把|x1﹣x2|+|y1﹣y2|稱為Pl,P2兩點(diǎn)間的直角距離,記作d(P1,P2),即d(P1,P2)=|x1﹣x2|+|y1﹣y2|.

(1)已知O為坐標(biāo)原點(diǎn),若點(diǎn)P坐標(biāo)為(1,3),則d(O,P)=   ;

(2)已知O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P(x,y)滿足d(O,P)=2,請寫出x與y之間滿足的關(guān)系式,并在所給的直角坐標(biāo)系中畫出所有符合條件的點(diǎn)P所組成的圖形;

(3)試求點(diǎn)M(2,3)到直線y=x+2的最小直角距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計(jì)算正確的是( )

A. x22xy2=﹣x2yB. 2a3b=﹣ab

C. a2+a3a5D. 3ab3ab=﹣6ab

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線軸、軸分別交于點(diǎn),點(diǎn)軸負(fù)半軸上一點(diǎn), 于點(diǎn)軸于點(diǎn).已知拋物線經(jīng)過點(diǎn)、

)求拋物線的函數(shù)式.

)連接,點(diǎn)在線段上方的拋物線上,連接、,若面積滿足,求點(diǎn)的坐標(biāo).

)如圖, 中點(diǎn),設(shè)為線段上一點(diǎn)(不含端點(diǎn)),連接.一動(dòng)點(diǎn)出發(fā),沿線段以每秒個(gè)單位的速度運(yùn)動(dòng)到,再沿著線段以每秒個(gè)單位的速度運(yùn)動(dòng)到后停止.若點(diǎn)在整個(gè)運(yùn)動(dòng)過程中用時(shí)最少,請直接寫出最少時(shí)間和此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙與菱形在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)軸上,且點(diǎn)在點(diǎn)的右側(cè).

)求菱形的周長.

)若⊙沿軸向右以每秒個(gè)單位長度的速度平移,菱形沿軸向左以每秒個(gè)單位長度的速度平移,設(shè)菱形移動(dòng)的時(shí)間為(秒),當(dāng)⊙相切,且切點(diǎn)為的中點(diǎn)時(shí),連接,求的值及的度數(shù).

)在()的條件下,當(dāng)點(diǎn)所在的直線的距離為時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)為了鼓勵(lì)市民節(jié)約用水,計(jì)劃實(shí)行生活用水按階梯式水價(jià)計(jì)費(fèi),每月用水量不超過10噸(含10噸)時(shí),每噸按基礎(chǔ)價(jià)收費(fèi);每月用水量超過10噸時(shí),超過的部分每噸按調(diào)節(jié)價(jià)收費(fèi).例如,第一個(gè)月用水16噸,需交水費(fèi)17.8元,第二個(gè)月用水20噸,需交水費(fèi)23元.
(1)求每噸水的基礎(chǔ)價(jià)和調(diào)節(jié)價(jià);
(2)設(shè)每月用水量為x噸,應(yīng)交水費(fèi)為y元,寫出y與x之間的函數(shù)關(guān)系式;
(3)若某月用水12噸,應(yīng)交水費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(0,2),直線y= 與x軸、y軸分別交于點(diǎn)A,B,點(diǎn)M是直線AB上的一個(gè)動(dòng)點(diǎn),則PM長的最小值為( )

A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OABC各個(gè)頂點(diǎn)的坐標(biāo)分別是O0,0)、A20)、B4,2)、C2,3),過點(diǎn)C軸平行的直線EF與過點(diǎn)B軸平行的直線EH交于點(diǎn)E.

求四邊形OABC的面積;

在線段EH上是否存在點(diǎn)P,使四邊形OAPC的面積為7?若不存在,說明理由,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案