已知正方形ABCD的邊長為a,兩條對角線AC、BD相交于點O,P是射線AB上任意一點,過P點分別作直線AC、BD的垂線PE、PF,垂足為E、F.

(1)如圖1,當P點在線段AB上時,求PE+PF的值.

(2)如圖2,當P點在線段AB的延長線上時,求PE-PF的值.

答案:
解析:

  分析:(1)因為ABCD是正方形,所以對角線互相垂直,又因為過P點分別作直線AC、BD的垂線PE、PF,垂足為E、F,所以可證明四邊形PFOE是矩形,從而求出解.

  (2)因為ABCD是正方形,所以對角線互相垂直,又因為過P點分別作直線AC、BD的垂線PE、PF,垂足為E、F,所以可證明四邊形PFOE是矩形,從而求出解.

  解答:解:(1)∵ABCD是正方形,

  ∴AC⊥BD,∵PF⊥BD,∴PF∥AC,同理PE∥BD,

  ∴四邊形PFOE為矩形,故PE=OF.

  又∵∠PBF=45°,∴PF=BF.

  ∴PE+PF=OF+FB=OB=acos45°=a.

  (2)∵ABCD是正方形,

  ∴AC⊥BD,∵PF⊥BD,∴PF∥AC,同理PE∥BD,

  ∴四邊形PFOE為矩形,故PE=OF.

  又∵∠PBF=∠OBA=45°,∴PF=BF.

  ∴PE-PF=OF-BF=OB=acos45°=a.

  點評:本題考查正方形的性質(zhì),正方形的對角線互相垂直且平分每一組對角,四邊相等,四個角都是直角,以及矩形的判定和性質(zhì)解直角三角形等.


提示:

考點:正方形的性質(zhì);矩形的判定與性質(zhì);解直角三角形.


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知正方形ABCD的邊長為12cm,E為CD邊上一點,DE=5cm.以點A為中心,將△ADE按順時針方向旋轉(zhuǎn)得△ABF,則點E所經(jīng)過的路徑長為
 
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知正方形ABCD的邊長為6,以D為圓心,DA為半徑在正方形內(nèi)作弧AC,E是AB邊上動點(與點A、B不重精英家教網(wǎng)合),過點E作弧AC的切線,交BC于點F,G為切點,⊙O是△EBF的內(nèi)切圓,分別切EB、BF、FE于點P、J、H
(1)求證:△ADE∽△PEO;
(2)設AE=x,⊙O的半徑為y,求y關(guān)于x的解析式,并寫出定義域;
(3)當⊙O的半徑為1時,求CF的長;
(4)當點E在移動時,圖中哪些線段與線段EP始終保持相等,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•同安區(qū)質(zhì)檢)如圖,已知正方形ABCD的邊長是2,E是AB的中點,延長BC到點F使CF=AE.
(1)求證:△ADE≌△CDF;
(2)現(xiàn)把△DCF向左平移,使DC與AB重合,得△ABH,AH交ED于點G.求AG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•香洲區(qū)一模)如圖,已知正方形ABCD的邊長為28,動點P從A開始在線段AD上以每秒3個單位長度的速度向點D運動(點P到達點D時終止運動),動直線EF從AD開始以每秒1個單位長度的速度向下平行移動(即EF∥AD),并且分別與DC、AC交于E、F兩點,連接FP,設動點P與動直線EF同時出發(fā),運動時間為t 秒.
(1)t為何值時,梯形DPFE的面積最大?最大面積是多少?
(2)當梯形DPFE的面積等于△APF的面積時,求線段PF的長.
(3)△DPF能否為一個等腰三角形?若能,試求出所有的t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知正方形ABCD的邊長為8cm,點E、F分別在邊BC、CD上,∠EAF=45°.當EF=8cm時,△AEF的面積是
32
32
cm2;當EF=7cm時,△EFC的面積是
8
8
cm2

查看答案和解析>>

同步練習冊答案