【題目】已知:如圖,平行四邊形ABCD中,M、N分別為AB和CD的中點.
(1)求證:四邊形AMCN是平行四邊形;
(2)若AC=BC=5,AB=6,求四邊形AMCM的面積.
【答案】(1)見解析;(2)12.
【解析】
(1)由題意可得AB∥CD,AB=CD,又由M,N分別是AB和CD的中點可得AM=∥CN,即可得結(jié)論;
(2)根據(jù)等腰三角形的性質(zhì)可得CM⊥AB,AM=3,根據(jù)勾股定理可得CM=4,則可求面積.
(1)∵四邊形ABCD是平行四邊形,
∴AB=CD,AB∥CD,
∵M,N分別為AB和CD的中點,
∴AM=AB,CN=CD,
∴AM=CN,且AB∥CD,
∴四邊形AMCN是平行四邊形;
(2)∵AC=BC=5,AB=6,M是AB中點,
∴AM=MB=3,CM⊥AM,
∴CM=,
∵四邊形AMCN是平行四邊形,且CM⊥SM,
∴AMCN是矩形,
∴S四邊形AMCN=12.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校實施新課程改革以來,學(xué)生的學(xué)習(xí)能力有了很大提高,王老師為進(jìn)一步了解本班學(xué)生自主學(xué)習(xí)、合作交流的現(xiàn)狀,對該班部分學(xué)生進(jìn)行調(diào)查,把調(diào)查結(jié)果分成四類(A:特別好,B:好,C:一般,D:較差)后,再將調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計圖(如圖①②).請根據(jù)統(tǒng)計圖解答下列問題:
(1)本次調(diào)查中,王老師一共調(diào)查了________名學(xué)生;
(2)將條形統(tǒng)計圖補(bǔ)充完整;
(3)為了共同進(jìn)步,王老師從被調(diào)查的A類和D類學(xué)生中分別選取一名學(xué)生進(jìn)行“兵教兵”互助學(xué)習(xí),請用列表或畫樹狀圖的方法求出恰好選中一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】提出問題:
(1)如圖1,在正方形ABCD中,點E,H分別在BC,AB上,若AE⊥DH于點O,求證:AE=DH;
類比探究:
(2)如圖2,在正方形ABCD中,點H,E,G,F分別在AB,BC,CD,DA上,若EF⊥HG于點O,探究線段EF與HG的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 ,在平行四邊形 ABCD 中,對角線 AC 、 BD 交于點 O ,并且 DAC 60 ,ADB 15 ,點 E 是 AD 上一動點,延長 EO 交 BC 于點 F 。當(dāng)點 E 從 D 點向 A 點移動 過程中(點 E 與點 D 、點 A 不重合),則四邊形 AFCE 的變化是( )
A.平行四邊形→矩形→平行四邊形→菱形→平行四邊形
B.平行四邊形→矩形→平行四邊形→正方形→平行四邊形
C.平行四邊形→菱形→平行四邊形→矩形→平行四邊形
D.平行四邊形→矩形→菱形→正方形→平行四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知三角形三個內(nèi)角的度數(shù)之和是180°,如圖是兩個三角板不同位置的擺放,其中∠ACB=∠CDE=90°,∠BAC=60°,∠DEC=45°.
(1)當(dāng)AB∥CD時,如圖①,求∠DCB的度數(shù);
(2)當(dāng)CD與CB重合時,如圖②,判斷DE與AC的位置關(guān)系并說明理由;
(3)如圖③,當(dāng)∠DCB= 時,AB∥CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下表,回答問題:
x | … | -2 | -1 | 0 | 1 | 2 | … |
-2x+5 | … | 9 | 7 | 5 | 3 | a | … |
2x+8 | … | 4 | 6 | 8 | 10 | b | … |
(初步感知)
(1)a= ;b= ;
(歸納規(guī)律)
(2)隨著x值的變化,兩個代數(shù)式的值變化規(guī)律是什么?
(問題解決)
(3)比較-2x+5與2x+8的大;
(4)請寫出一個含x的代數(shù)式,要求x的值每增加1,代數(shù)式的值減小5,當(dāng)x=0時,
代數(shù)式的值為-7.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=mx(m為常數(shù))與雙曲線y=(k為常數(shù))相交于A、B兩點.
(1)若點A的橫坐標(biāo)為3,點B的縱坐標(biāo)為﹣4
①直接寫出:k=____,m=____;
②點C在第一象限內(nèi)是雙曲線y=的點,當(dāng)S△OAC=9時,求點C的坐標(biāo);
(2)將直線y=mx向右平移得到直線y=mx+b,交雙曲線y=于點E(4,y1)和F(﹣2,y2),直接寫出不等式mx2+bx<k的解集:_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】瑩瑩家里今年種植的獼猴桃獲得大豐收,星期六從外地來了一位客商到村子里收購獼猴桃.瑩瑩家賣給了該客商10箱獼猴桃.瑩瑩在家里幫助爸爸記賬,每標(biāo)準(zhǔn)箱獼猴桃的凈重為5千克,超過標(biāo)準(zhǔn)數(shù)的部分記為“+”,不足標(biāo)準(zhǔn)數(shù)的部分記為“﹣”,瑩瑩的記錄如下:+0.4、+0.6、﹣0.2、+0.1、﹣0.6、﹣0.3、+0.4、0、+0.7、﹣0.3.
(1)請計算這10箱獼猴桃的總重為多少千克?
(2)如果彌猴桃的價格為9元/千克,瑩瑩家出售這10箱獼猴桃共收入多少元?(精確到1元)
(3)若都用這種紙箱裝,瑩瑩家的獼猴桃共能裝約2000箱,按照目前這個價格,把獼猴桃全部出售,瑩瑩家大約能收入多少元?(精確到萬位)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】佳佳想探究一元三次方程x3+2x2-x-2=0的解的情況.根據(jù)以往的學(xué)習(xí)經(jīng)驗他想到了方程與函數(shù)的關(guān)系:一次函數(shù)y=kx+b(k≠0)的圖象與x軸交點的橫坐標(biāo)即為一次方程kx+b=0(k≠0)的解;二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交點的橫坐標(biāo)即為一元二次方程ax2+bx+c=0(a≠0)的解.如:二次函數(shù)y=x2-2x-3的圖象與x軸的交點為(-1,0)和(3,0),交點的橫坐標(biāo)-1和3即為方程x2-2x-3=0的解.
根據(jù)以上方程與函數(shù)的關(guān)系,若知道函數(shù)y=x3+2x2-x-2的圖象與x軸交點的橫坐標(biāo),即可知道方程x3+2x2-x-2=0的解.
佳佳為了解函數(shù)y=x3+2x2-x-2的圖象,通過描點法畫出函數(shù)的圖象:
(1)直接寫出m的值________,并畫出函數(shù)圖象;
(2)根據(jù)表格和圖象可知,方程的解有________個,分別為________________;
(3)借助函數(shù)的圖象,直接寫出不等式x3+2x2>x+2的解集________________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com