【題目】如圖 ,在平行四邊形 ABCD 中,對角線 AC 、 BD 交于點(diǎn) O ,并且 DAC 60 ,ADB 15 ,點(diǎn) E 是 AD 上一動點(diǎn),延長 EO 交 BC 于點(diǎn) F 。當(dāng)點(diǎn) E 從 D 點(diǎn)向 A 點(diǎn)移動 過程中(點(diǎn) E 與點(diǎn) D 、點(diǎn) A 不重合),則四邊形 AFCE 的變化是( )
A.平行四邊形→矩形→平行四邊形→菱形→平行四邊形
B.平行四邊形→矩形→平行四邊形→正方形→平行四邊形
C.平行四邊形→菱形→平行四邊形→矩形→平行四邊形
D.平行四邊形→矩形→菱形→正方形→平行四邊形
【答案】C
【解析】
在整個運(yùn)動過程中,始終有AO=CO,EO=FO,所以四邊形AFCE恒為平行四邊形,再考查四邊形AFCE的對角線AC與EF,會發(fā)現(xiàn)隨著點(diǎn)E的運(yùn)動,它們滿足AC、EF既不垂直也不相等AC⊥EFAC、EF既不垂直也不相等AC=EFAC、EF既不垂直也不相等的過程,由此進(jìn)行判斷即可.
解:在整個運(yùn)動過程中,始終有AO=CO,EO=FO,所以四邊形AFCE恒為平行四邊形.
∵DAC 60,ADB 15,∴∠AOD=180°-∠DAC-∠ADB=105°.
點(diǎn)E從D點(diǎn)向A點(diǎn)移動過程中,當(dāng)∠EOD<15°時,AC、EF既不垂直也不相等,四邊形AFCE為平行四邊形,
當(dāng)∠EOD=15°時,AC⊥EF,四邊形AFCE為菱形,
當(dāng)15°<∠EOD<45°時,AC、EF既不垂直也不相等,四邊形AFCE為平行四邊形,
當(dāng)∠EOD=45°時,∠AEO=60°,∵DAC 60,∴∠AEO=DAC,
∴AO=EO,∴AC=EF,∴四邊形AFCE為矩形,
當(dāng)45°<∠EOD<105°時,AC、EF既不垂直也不相等,四邊形AFCE為平行四邊形,
故選B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2-x+a與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C,其頂點(diǎn)在直線y=-2x上.
【1】求a的值;
【2】求A,B的坐標(biāo);
【3】以AC,CB為一組鄰邊作□ACBD,則點(diǎn)D關(guān)于x軸的對稱點(diǎn)D′ 是否在該拋物線上?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(閱讀理解)
點(diǎn)A、B、C為數(shù)軸上三點(diǎn),如果點(diǎn)C在A、B之間且到A的距離是點(diǎn)C到B的距離3倍,那么我們就稱點(diǎn)C是{A,B}的奇點(diǎn).
例如,如圖1,點(diǎn)A表示的數(shù)為﹣3,點(diǎn)B表示的數(shù)為1.表示0的點(diǎn)C到點(diǎn)A的距離是3,到點(diǎn)B的距離是1,那么點(diǎn)C是{A,B}的奇點(diǎn);又如,表示﹣2的點(diǎn)D到點(diǎn)A的距離是1,到點(diǎn)B的距離是3,那么點(diǎn)D就不是{A,B}的奇點(diǎn),但點(diǎn)D是{B,A}的奇點(diǎn).
(知識運(yùn)用)
如圖2,M、N為數(shù)軸上兩點(diǎn),點(diǎn)M所表示的數(shù)為﹣3,點(diǎn)N所表示的數(shù)為5.
(1)數(shù) 所表示的點(diǎn)是{M,N}的奇點(diǎn);數(shù) 所表示的點(diǎn)是{N,M}的奇點(diǎn);
(2)如圖3,A、B為數(shù)軸上兩點(diǎn),點(diǎn)A所表示的數(shù)為﹣50,點(diǎn)B所表示的數(shù)為30.現(xiàn)有一動點(diǎn)P從點(diǎn)B出發(fā)向左運(yùn)動,當(dāng)P點(diǎn)運(yùn)動到數(shù)軸上的什么位置時,P、A和B中恰有一個點(diǎn)為其余兩點(diǎn)的奇點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)|﹣3|﹣5×(﹣)+(﹣4)
(2)(﹣2)2﹣4÷(﹣)+(﹣1)2016
(3)×(﹣24)
(4)﹣12014﹣(1﹣0.5)÷×[(﹣2)3﹣4]
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從有關(guān)方面獲悉,在我市農(nóng)村已經(jīng)實(shí)行了農(nóng)民新型合作醫(yī)療保險制度.享受醫(yī)保的農(nóng)民可在規(guī)定的醫(yī)院就醫(yī)并按規(guī)定標(biāo)準(zhǔn)報銷部分醫(yī)療費(fèi)用.下表是醫(yī)療費(fèi)用報銷的標(biāo)準(zhǔn):
(說明:住院醫(yī)療費(fèi)用為整數(shù),住院醫(yī)療費(fèi)用的報銷分段計算.如:某人住院醫(yī)療費(fèi)用共30000元,則5000元按30%報銷、15000元按40%報銷、余下的10000元按50%報銷;題中涉及到的醫(yī)療費(fèi)均指允許報銷的醫(yī)療費(fèi))
(1)甲農(nóng)民一年內(nèi)實(shí)際門診醫(yī)療費(fèi)為2000元,則標(biāo)準(zhǔn)報銷的金額為 元;
乙農(nóng)民一年住院醫(yī)療費(fèi)為15000元,則按標(biāo)準(zhǔn)報銷的金額為 元;
(2)設(shè)某農(nóng)民一年中住院的實(shí)際醫(yī)療費(fèi)用為x元(5001≤x≤20000),按標(biāo)準(zhǔn)報銷的金額為多少元?(用含x的代數(shù)式表示)
(3)若某農(nóng)民一年內(nèi)本人自負(fù)住院醫(yī)療費(fèi)17000元(自負(fù)醫(yī)療費(fèi)=實(shí)際醫(yī)療費(fèi)﹣按標(biāo)準(zhǔn)報銷的金額),則該農(nóng)民當(dāng)年實(shí)際醫(yī)療費(fèi)用共多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】規(guī)定一種新運(yùn)算:,例如:根據(jù)理解計算下列式子的值:(0*1)+(1*2)+(2*3)+(3*4)+…+(2019*2020)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,平行四邊形ABCD中,M、N分別為AB和CD的中點(diǎn).
(1)求證:四邊形AMCN是平行四邊形;
(2)若AC=BC=5,AB=6,求四邊形AMCM的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,大樓AB右側(cè)有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測得障礙物邊緣點(diǎn)C的俯角為300,測得大樓頂端 A的仰角為450(點(diǎn)B,C,E在同一水平直線上)。已知AB=50m,DE=10m,求障礙物B,C兩點(diǎn)間的距離。(結(jié)果精確到1m,參考數(shù)據(jù): )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上A,B兩點(diǎn)表示的數(shù)分別為-4,8.有一動點(diǎn)P從點(diǎn)A出發(fā),第1次向左運(yùn)動1個單位長度,第2次向右運(yùn)動2個單位長度,第3次向左運(yùn)動3個單位長度……按照此規(guī)律不斷地運(yùn)動.
(1)①當(dāng)運(yùn)動到第2020次時,點(diǎn)P表示的數(shù)是_______;
②點(diǎn)A與點(diǎn)B的距離AB=_______;
(2)點(diǎn)P會不會在某次運(yùn)動時恰好到達(dá)某一個位置,使點(diǎn)P到點(diǎn)B的距離是點(diǎn)P到點(diǎn)A的距離的3倍?若存在,請求出此時點(diǎn)P表示的數(shù);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com