如圖,排球運(yùn)動(dòng)員甲站在點(diǎn)O處練習(xí)發(fā)球,球網(wǎng)與O點(diǎn)的水平距離為9m,高度為2.43m,球場(chǎng)的邊界距O點(diǎn)的水平距離為18m.若把球看成點(diǎn),其運(yùn)行的高度y(m)與運(yùn)行的水平距離x(m)是二次函數(shù)關(guān)系.以O(shè)為原點(diǎn)建立平面直角坐標(biāo)系.
(1)在某一次發(fā)球時(shí),甲將球從O點(diǎn)正上方2m的A處發(fā)出,已知球的最大飛行高度為2.6m,此時(shí)距O點(diǎn)的水平距離為6m.
①求拋物線的解析式.
②球能否越過球網(wǎng)?球會(huì)不會(huì)出界?請(qǐng)說明理由.
(2)若球的最大飛行高度時(shí)距O點(diǎn)的水平距離6m不變,要使球一定能越過球網(wǎng),又不出邊界,求二次函數(shù)中二次項(xiàng)系數(shù)的最大值.
作業(yè)寶

解:(1)①設(shè)拋物線的解析式為y=a(x-6)2+2.6,由題意,得
2=a(0-6)2+2.6,
解得:a=-,
∴拋物線的解析式為:y=-(x-6)2+2.6;
②x=9時(shí),
y=-(9-6)2+2.6=2.45.
∵2.45>2.43,
∴球能越過球網(wǎng);
當(dāng)x=18時(shí),
y=-(18-6)2+2.6,
解得:y=0.2>0,
∴球會(huì)出界;

(3)設(shè)拋物線的解析式為y=a(x-6)2+h,由題意得:2=a(0-6)2+h,
∴a=
∴y=(x-6)2+h,
∴當(dāng)x=9時(shí),y=(9-6)2+h=>2.43,
當(dāng)x=18時(shí),y=(18-6)2+h=8-3h≤0,
,
解得:h≥,
當(dāng)h=時(shí),a最大,
∴二次項(xiàng)系數(shù)的最大值為:=-
分析:(1)①設(shè)拋物線的解析式為y=a(x-6)2+2.6,把點(diǎn)(0,2)代入即可得出結(jié)論;
②把x=9和x=18時(shí)代入解析式就可以求出y的值與2.43和0比較就可以得出結(jié)論;
(2)設(shè)拋物線的解析式為y=a(x-6)2+h,當(dāng)x=0,y=2時(shí)代入解析式就可以表示出a的值,當(dāng)x=9和x=18時(shí)建立不等式組就可以求出h的取值范圍就可以求出a的范圍.
點(diǎn)評(píng):本題主要考查了二次函數(shù)的應(yīng)用,求范圍的問題,可利用臨界點(diǎn)法求出自變量的值,再根據(jù)題意確定范圍.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,排球運(yùn)動(dòng)員甲站在點(diǎn)O處練習(xí)發(fā)球,將球從O點(diǎn)正上方2m的A處發(fā)出,把球看成點(diǎn),其運(yùn)行路線是拋物線的一部分.當(dāng)球運(yùn)動(dòng)到最高點(diǎn)D時(shí),其高度為2.6m,離甲站立地點(diǎn)O點(diǎn)的水平距離為6m.球網(wǎng)BC離O點(diǎn)的水平距離為9m,以O(shè)為坐標(biāo)原點(diǎn)建立如圖所示的坐標(biāo)系,乙站立地點(diǎn)M的坐標(biāo)為(m,0).
(1)求出拋物線的解析式;(不寫出自變量的取值范圍) 
(2)求排球落地點(diǎn)N離球網(wǎng)的水平距離;
(3)乙原地起跳可接球的最大高度為2.4米,若乙因?yàn)榻忧蚋叨炔粔蚨,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,排球運(yùn)動(dòng)員甲站在點(diǎn)O處練習(xí)發(fā)球,球網(wǎng)與O點(diǎn)的水平距離為9m,高度為2.43m,球場(chǎng)的邊界距O點(diǎn)的水平距離為18m.若把球看成點(diǎn),其運(yùn)行的高度y(m)與運(yùn)行的水平距離x(m)是二次函數(shù)關(guān)系.以O(shè)為原點(diǎn)建立平面直角坐標(biāo)系.
(1)在某一次發(fā)球時(shí),甲將球從O點(diǎn)正上方2m的A處發(fā)出,已知球的最大飛行高度為2.6m,此時(shí)距O點(diǎn)的水平距離為6m.
①求拋物線的解析式.
②球能否越過球網(wǎng)?球會(huì)不會(huì)出界?請(qǐng)說明理由.
(2)若球的最大飛行高度時(shí)距O點(diǎn)的水平距離6m不變,要使球一定能越過球網(wǎng),又不出邊界,求二次函數(shù)中二次項(xiàng)系數(shù)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

作业宝如圖,排球運(yùn)動(dòng)員甲站在點(diǎn)O處練習(xí)發(fā)球,將球從O點(diǎn)正上方2m的A處發(fā)出,把球看成點(diǎn),其運(yùn)行路線是拋物線的一部分.當(dāng)球運(yùn)動(dòng)到最高點(diǎn)D時(shí),其高度為2.6m,離甲站立地點(diǎn)O點(diǎn)的水平距離為6m.球網(wǎng)BC離O點(diǎn)的水平距離為9m,以O(shè)為坐標(biāo)原點(diǎn)建立如圖所示的坐標(biāo)系,乙站立地點(diǎn)M的坐標(biāo)為(m,0).
(1)求出拋物線的解析式;(不寫出自變量的取值范圍)
(2)求排球落地點(diǎn)N離球網(wǎng)的水平距離;
(3)乙原地起跳可接球的最大高度為2.4米,若乙因?yàn)榻忧蚋叨炔粔蚨,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案