【題目】在平面直角坐標(biāo)系中,、為平面內(nèi)不重合的兩個(gè)點(diǎn),若到、兩點(diǎn)的距離相等,則稱點(diǎn)是線段的“似中點(diǎn)”.
(1)已知,, 在點(diǎn)、、、中,線段的“似中點(diǎn)”是點(diǎn) .
(2)直線與軸交于點(diǎn),與軸交于點(diǎn).
①若點(diǎn)是線段的“似中點(diǎn)”,且在坐標(biāo)軸.上,求點(diǎn)的坐標(biāo);
②若的半徑為2,圓心為,若上存在線段的“似中點(diǎn)”,請(qǐng)直接寫出的取值范圍.
【答案】(1)D,F;(2)①(1,0)和(0,);②-3≤t≤5.
【解析】
(1)分別求出點(diǎn)A,B與點(diǎn)C,D,E,F的距離,再根據(jù)“似中點(diǎn)”的定義,進(jìn)行判斷即可;
(2)①由題意得:點(diǎn)H為MN的垂直平分線與坐標(biāo)軸的交點(diǎn),畫出圖形,根據(jù)含30°角的直角三角形的性質(zhì),即可求解;②設(shè)點(diǎn)P到H1H2的距離為h,則當(dāng)h≤2時(shí),上存在線段的“似中點(diǎn)”, h=,進(jìn)而即可求出答案.
(1)∵,,、、、,
∴,
,
,
,
∴,,
∴線段的“似中點(diǎn)”是點(diǎn)D,F.
故答案是:D,F;
(2)①由題意可知:M(-1,0),N(0,),
∴∠NMO=60°,MN=,
∵點(diǎn)是線段的“似中點(diǎn)”,且在坐標(biāo)軸上,
∴點(diǎn)H為MN的垂直平分線與坐標(biāo)軸的交點(diǎn),
∴∠MH1H2=30°,
∴H1M=2,
∴H1(1,0),
∵OH2=OH1=,
∴H2(0,),
綜上所述,點(diǎn)的坐標(biāo)為:(1,0)和(0,);
②若上存在線段的“似中點(diǎn)”,則與線段MN的垂直平分線H1H2有公共點(diǎn).
設(shè)點(diǎn)P到H1H2的距離為h,則當(dāng)h≤2時(shí),上存在線段的“似中點(diǎn)”,
∵∠H2H1O=30°,
∴h=H1P=,
∴≤2,解得:-3≤t≤5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=x2﹣3與x軸交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸交于點(diǎn)C,連接AC.點(diǎn)Q是線段AC上的動(dòng)點(diǎn),過Q作直線l∥x軸,直線1與∠BAC的平分線交于點(diǎn)M,與∠CAx的平分線交于點(diǎn)N.
(1)P是直線AC下方拋物線上一動(dòng)點(diǎn),連接PA,PC,當(dāng)△PAC的面積最大時(shí),求PQ+AM的最小值;
(2)如圖2,連接MC,NC,當(dāng)四邊形AMCN為矩形時(shí),將△AMN沿著直線AC平移得到△A'M'N',邊A'M'所在的直線與y軸交于D點(diǎn),若△DM'N'為等腰三角形時(shí),求OD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),點(diǎn)的坐標(biāo)為,與軸交于點(diǎn),作直線.動(dòng)點(diǎn)在軸上運(yùn)動(dòng),過點(diǎn)作軸,交拋物線于點(diǎn),交直線于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為.
(1)直接寫出拋物線的解析式__________和直線的解析式_________;
(2)當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),直接寫出線段長(zhǎng)度的最大值_________;
(3)當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),若是以為腰的等腰直角三角形時(shí),求的值;
(4)當(dāng)以、、、為頂點(diǎn)的四邊形是平行四邊形時(shí),求出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】網(wǎng)上購物已經(jīng)成為人們常用的一種購物方式,售后評(píng)價(jià)特別引人關(guān)注,消費(fèi)者在網(wǎng)店購買某種商品后,對(duì)其有“好評(píng)”、“中評(píng)”、“差評(píng)”三種評(píng)價(jià),假設(shè)這三種評(píng)價(jià)是等可能的.
(1)小明對(duì)一家網(wǎng)店銷售某種商品顯示的評(píng)價(jià)信息進(jìn)行了統(tǒng)計(jì),并列出了兩幅不完整的統(tǒng)計(jì)圖.利用圖中所提供的信息解決以下問題:
①小明一共統(tǒng)計(jì)了多少個(gè)評(píng)價(jià);
②請(qǐng)將圖1補(bǔ)充完整;
③求出圖2中“差評(píng)”所在扇形圓心角的度數(shù).
(2)若甲、乙兩名消費(fèi)者在該網(wǎng)店購買了同一商品,請(qǐng)你用列表格或畫樹狀圖的方法幫助店主求一下兩人中至少有一個(gè)給“好評(píng)”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位同學(xué)進(jìn)行長(zhǎng)跑訓(xùn)練,甲和乙所跑的路程S(單位:米)與所用時(shí)間t(單位:秒)之間的函數(shù)圖象分別為線段OA和折線OBCD.則下列說法正確的是( )
A. 兩人從起跑線同時(shí)出發(fā),同時(shí)到達(dá)終點(diǎn)
B. 跑步過程中,兩人相遇一次
C. 起跑后160秒時(shí),甲、乙兩人相距最遠(yuǎn)
D. 乙在跑前300米時(shí),速度最慢
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,點(diǎn),,,分別在邊,,,上,,.
(1)如圖(1)求證:四邊形是平行四邊形;
(2)如圖(2)若平分,在不添加輔助線的條件下,直接寫出長(zhǎng)度等于的線段(不包括).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,它與x軸的兩個(gè)交點(diǎn)分別為(﹣1,0),(3,0).對(duì)于下列命題:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正確的有( )
A.3個(gè)B.2個(gè)C.1個(gè)D.0個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A、B兩地之間的路程為3000m,甲、乙兩人分別從A、B兩地同時(shí)出發(fā),相向而行,甲到B地停止,乙到A地停止,出發(fā)10分鐘后,甲原路原速返回A地取重要物品,取到該物品后立即原路原速前往B地(取物品的時(shí)間忽略不計(jì)),結(jié)果到達(dá)B地的時(shí)間比乙到達(dá)A地的時(shí)間晚,在整個(gè)行走過程中,甲、乙兩人均保持各自的速度勻速行走,甲、乙兩人相距的路程y(m)與甲運(yùn)動(dòng)的時(shí)間x(min)之間的關(guān)系如圖所示,則乙到達(dá)A地時(shí),甲與B地相距的路程是_____m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,水壩的橫截面是梯形,迎水坡的坡角為,背水坡的坡度為,壩頂寬米,壩高5米.求:
(1)壩底寬的長(zhǎng)(結(jié)果保留根號(hào));
(2)在上題中,為了提高堤壩的防洪能力,市防汛指揮部決定加固堤壩,要求壩頂加寬0.5米,背水坡的坡度改為,已知堤壩的總長(zhǎng)度為,求完成該項(xiàng)工程所需的土方(結(jié)果保留根號(hào)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com