在平面直角坐標系中,已知點A(,0),B(2,0),若點C在一次函數(shù)的圖象上,且△ABC為直角三角形,則滿足條件的點C有 ( )
A.1個B.2個C.3個D.4個
D.

試題分析:由題意知,直線y=-x+2與x軸的交點為(4,0),與y軸的交點為(0,2),如圖:

過點A作垂線與直線的交點W(-4,4),
過點B作垂線與直線的交點S(2,1),
過AB中點E(-1,0),作垂線與直線的交點為F(-1,2.5),
則EF=2.5<3,
所以以3為半徑,以點E為圓心的圓與直線必有兩個交點
∴共有四個點能與點A,點B組成直角三角形.
故選D.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

為了節(jié)約資源,科學指導居民改善居住條件,小王向房管部門提出了一個購買商品房的政策性方案.
人均住房面積(平方米)
單價(萬元/平方米)
不超過30(平方米)
0.3
超過30平方米不超過m(平方米)部分(45≤m≤60)
0.5
超過m平方米部分
0.7
 
根據(jù)這個購房方案:
(1)若某三口之家欲購買120平方米的商品房,求其應繳納的房款;
(2)設該家庭購買商品房的人均面積為x平方米,繳納房款y萬元,請求出y關于x的函數(shù)關系式;
(3)若該家庭購買商品房的人均面積為50平方米,繳納房款為y萬元,且57<y≤60 時,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

,是任意兩個不等實數(shù),我們規(guī)定:滿足不等式的實數(shù)的所有取值的全體叫做閉區(qū)間,表示為. 對于一個函數(shù),如果它的自變量與函數(shù)值滿足:當m≤≤n時,有m≤≤n,我們就稱此函數(shù)是閉區(qū)間上的“閉函數(shù)”.
(1)反比例函數(shù)是閉區(qū)間上的“閉函數(shù)”嗎?請判斷并說明理由;
(2)若一次函數(shù)是閉區(qū)間上的“閉函數(shù)”,求此函數(shù)的表達式;
(3)若二次函數(shù)是閉區(qū)間上的“閉函數(shù)”,直接寫出實數(shù) 的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,點A的坐標為(6,0),點B為y軸的負半軸上的一個動點,分別以OB,AB為直角邊在第三、第四象限作等腰Rt△OBF,等腰Rt△ABE,連接EF交y軸于P點,當點B在y軸上移動時,PB的長度為( )
A.2B.3
C.4D.PB的長度隨點B的運動而變化

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知直線y=kx+b,若k+b=-5,kb=6,那么該直線不經(jīng)過第       象限.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在邊長為4的正方形ABCD中,動點P從A點出發(fā),以每秒1個單位長度的速度沿點A→B方向運動,同時動點Q從B點出發(fā),以每秒2個單位長度的速度沿B→C→D方向運動,當P運動到B點時,P、Q兩點同時停止運動.設P點運動的時間為t,△APQ的面積為S,則S與t的函數(shù)關系的圖象是(     )

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象如圖所示,下列結(jié)論正確的是
A.它們的函數(shù)值y隨著x的增大而增大
B.它們的函數(shù)值y隨著x的增大而減小
C.k<0
D.它們的自變量x的取值為全體實數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

一天,某漁船離開港口前往黃巖島海域捕魚,8小時后返航,此時一艘漁政船從該港口出發(fā)前往黃巖島巡查(假設漁政船與漁船沿同一航線航行)。下圖是漁政船及漁船到港口的距離S和漁船離開港口的時間t之間的函數(shù)圖象.
(1)寫出漁船離港口的距離S和它離開港口的時間t的函數(shù)關系式;
(2)在漁船返航途中,什么時間范圍內(nèi)兩船間距離不超過30海里?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知直線的方程式為ax+by+c=0,且a<0<c<b,則函數(shù)的圖象為( 。
         
A                 B.                C.              D.

查看答案和解析>>

同步練習冊答案