點P是x軸正半軸上的一個動點,過點P作x軸的垂線PA交雙曲線y=
1
x
于點A,連接OA并延長,與雙曲線y=
1
x
交于點F,F(xiàn)H垂直于x軸,垂足為點H,連接AH、PF.
精英家教網(wǎng)
(1)如圖①,當(dāng)點A的橫坐標(biāo)為
3
2
時,求四邊形APFH的面積.
(2)如圖②,當(dāng)點P在x軸的正方向上運動到點D,過點D作x軸的垂線交雙曲線于點B,連接BO并延長,與雙曲線y=
1
x
交于點F,F(xiàn)H垂直于x軸,垂足為點H,連接BH、DF,求四邊形BDFH的面積.
(3)若雙曲線的解析式為y=
k
x
,四邊形BDFH的面積為
 
.(直接寫出答案)
分析:(1)如圖①,根據(jù)反比例函數(shù)圖象的性質(zhì)知道A、F關(guān)于原點對稱,而FH垂直于x軸,AP⊥x軸,由此得到H、P關(guān)于原點對稱,這樣就可以得到四邊形APFH的面積是△APO的四倍,而△APO的面積為反比例函數(shù)比例系數(shù)的絕對值的一半,由此即可解決問題;
(2)思路和(1)完全一樣;
(3)思路和(1)完全一樣.
解答:解:(1)如圖①,根據(jù)反比例函數(shù)圖象的性質(zhì)知道A、F關(guān)于原點對稱,
而FH垂直于x軸,AP⊥x軸,
∴H、P關(guān)于原點對稱,
∴四邊形APFH的面積是△APO的四倍,
設(shè)A的坐標(biāo)為(x,y)(x>0,y>0),
則xy=1,
而△APO的面積=
1
2
xy=
1
2
,
∴四邊形APFH的面積是4×
1
2
=2;

(2)如圖②,當(dāng)點P在x軸的正方向上運動到點D,過點D作x軸的垂線交雙曲線于點B,連接BO并延長,與雙曲線y=
1
x
交于點F,F(xiàn)H垂直于x軸,垂足為點H,連接BH、DF,
那么同樣得B、F關(guān)于原點對稱,D、H 關(guān)于原點對稱,
∴四邊形BDFH的面積是△OBD的面積的4倍,
而△OBD的面積同樣為
1
2
,
∴四邊形BDFH的面積是2;

(3)若雙曲線的解析式為y=
k
x
,四邊形BDFH的面積為2|k|.
故答案為:2|k|.
點評:此題主要考查了反比例函數(shù)圖象和性質(zhì),解題的關(guān)鍵 是利用函數(shù)圖象的性質(zhì)求出三角形的面積,然后利用三角形和四邊形的關(guān)系求出四邊形的面積解決問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知點P是x軸正半軸的一個動點,過點P作x軸的垂線PA交雙曲線y=
1x
于點A,連接OA.
精英家教網(wǎng)
(1)如圖甲,當(dāng)點P在x軸的正方向上運動時,Rt△AOP的面積大小是否變化答:
 
(請?zhí)睢白兓被颉安蛔兓保?BR>若不變,請求出Rt△AOP的面積=
 
;若改變,試說明理由(自行思索,不必作答);
(2)如圖乙,在x軸上的點P的右側(cè)有一點D,過點D作x軸的垂線交雙曲線于點B,連接BO交AP于C,設(shè)△AOP的面積是S1,梯形BCPD的面積為S2,則S1與S2的大小關(guān)系是S1
 
S2(請?zhí)睢埃尽薄ⅰ埃肌被颉?”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

點P是x軸正半軸上的一個動點,過點P作x軸的垂線PA交雙曲線數(shù)學(xué)公式于點A,連接OA并延長,與雙曲線數(shù)學(xué)公式交于點F,F(xiàn)H垂直于x軸,垂足為點H,連接AH、PF.
作業(yè)寶
(1)如圖①,當(dāng)點A的橫坐標(biāo)為數(shù)學(xué)公式時,求四邊形APFH的面積.
(2)如圖②,當(dāng)點P在x軸的正方向上運動到點D,過點D作x軸的垂線交雙曲線于點B,連接BO并延長,與雙曲線數(shù)學(xué)公式交于點F,F(xiàn)H垂直于x軸,垂足為點H,連接BH、DF,求四邊形BDFH的面積.
(3)若雙曲線的解析式為數(shù)學(xué)公式,四邊形BDFH的面積為______.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(浙江麗水卷)數(shù)學(xué)(解析版) 題型:解答題

如圖1,點A是x軸正半軸上的動點,點B的坐標(biāo)為(0,4),M是線段AB的中點。將點M繞點A順時針方向旋轉(zhuǎn)900得到點C,過點C作x軸的垂線,垂足為F,過點B作y軸的垂線與直線CF相交于點E,點D是點A關(guān)于直線CF的對稱點。連結(jié)AC,BC,CD,設(shè)點A的橫坐標(biāo)為t,

(1)當(dāng)t=2時,求CF的長;

(2)①當(dāng)t為何值時,點C落在線段CD上;

②設(shè)△BCE的面積為S,求S與t之間的函數(shù)關(guān)系式;

(3)如圖2,當(dāng)點C與點E重合時,將△CDF沿x軸左右平移得到,再將A,B,為頂點的四邊形沿剪開,得到兩個圖形,用這兩個圖形拼成不重疊且無縫隙的圖形恰好是三角形。請直接寫出符合上述條件的點坐標(biāo),

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年遼寧省大連市甘井子區(qū)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

點P是x軸正半軸上的一個動點,過點P作x軸的垂線PA交雙曲線于點A,連接OA并延長,與雙曲線交于點F,F(xiàn)H垂直于x軸,垂足為點H,連接AH、PF.

(1)如圖①,當(dāng)點A的橫坐標(biāo)為時,求四邊形APFH的面積.
(2)如圖②,當(dāng)點P在x軸的正方向上運動到點D,過點D作x軸的垂線交雙曲線于點B,連接BO并延長,與雙曲線交于點F,F(xiàn)H垂直于x軸,垂足為點H,連接BH、DF,求四邊形BDFH的面積.
(3)若雙曲線的解析式為,四邊形BDFH的面積為______.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年廣西南寧初中學(xué)校城鄉(xiāng)共同體中考模擬數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,點Ay軸正半軸上的一個定點,點B是反比例函數(shù)y (x>0)圖象上的一個動點,當(dāng)點B的縱坐標(biāo)逐漸減小時,△OAB的面積將(    )

(A) 逐漸增大      (B) 逐漸減小    (C) 不變       (D) 先增大后減小

 

查看答案和解析>>

同步練習(xí)冊答案