已知:拋物線y=ax2+bx+c(a≠0)的對稱軸為x=-1,與x軸交于A,B兩點,與y軸交于點C,其中A(-3,0),C(0,-2)
(1)求這條拋物線的函數(shù)表達式;
(2)已知在對稱軸上存在一點P,使得△PBC的周長最。埱蟪鳇cP的坐標;
(3)若點D是線段OC上的一個動點(不與點O、點C重合).過點D作DE∥PC交x軸于點E.連接PD、PE.設CD的長為m,△PDE的面積為S.求S與m之間的函數(shù)關系式.試說明S是否存在最大值?若存在,請求出最大值;若不存在,請說明理由.

【答案】分析:(1)已知拋物線過C(0,-2)點,那么c=-2;根據(jù)對稱軸為x=-1,因此-=-1,然后將A點的坐標代入拋物線中,通過聯(lián)立方程組即可得出拋物線的解析式.
(2)本題的關鍵是確定P點的位置,由于A是B點關于拋物線對稱軸的對稱點,因此連接AC與拋物線對稱軸的交點就是P點.可根據(jù)A,C的坐標求出AC所在直線的解析式,然后根據(jù)得出的一次函數(shù)的解析式求出與拋物線對稱軸的交點即可得出P點的坐標.
(3)△PDE的面積=△OAC的面積-△PDC的面積-△ODE的面積-△AEP的面積
△OAC中,已知了A,C的坐標,可求出△OAC的面積.
△PDC中,以CD為底邊,P的橫坐標的絕對值為高,即可表示出△PDC的面積.
△ODE中,可先用m表示出OD的長,然后根據(jù)△ODE與△OAC相似,求出OE的長,根據(jù)三角形的面積計算公式可用m表示出△ODE的面積.
△PEA中,以AE為底邊(可用OE的長表示出AE),P點的縱坐標的絕對值為高,可表示出△PEA的面積.
由此可表示出△ODE的面積,即可得出關于S,m的函數(shù)關系式.然后根據(jù)函數(shù)的性質求出三角形的最大面積以及對應的m的值.
解答:解:(1)由題意得,
解得
∴此拋物線的解析式為y=x2+x-2.

(2)連接AC、BC.

因為BC的長度一定,
所以△PBC周長最小,就是使PC+PB最。
B點關于對稱軸的對稱點是A點,AC與對稱軸x=-1的交點即為所求的點P.
設直線AC的表達式為y=kx+b,
,
解得,
∴此直線的表達式為y=-x-2,
把x=-1代入得y=-
∴P點的坐標為(-1,-).

(3)S存在最大值,
理由:∵DE∥PC,即DE∥AC.
∴△OED∽△OAC.
,即,
∴OE=3-m,OA=3,AE=m,
∴S=S△OAC-S△OED-S△AEP-S△PCD
=×3×2-×(3-m)×(2-m)-×-×m×1
=-m2+m=-(m-1)2+

∴當m=1時,S最大=
點評:本題著重考查了待定系數(shù)法求二次函數(shù)解析式、三角形相似等重要知識點;
(3)中無法直接求出三角形的面積時,可用其他圖形的面積經(jīng)過“和,差”的關系來求出其面積.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知:拋物線y=x2-(a+b)x+
c2
4
,其中a、b、c是△ABC的∠A、∠B、∠C的對邊.
(1)求證:拋物線與x軸必有兩個不同交點;
(2)設直線y=ax-bc與拋物線交于E、F兩點,與y軸交于點M,拋物線與y軸交于點N,若拋物線的對稱軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
(3)在(2)的條件下,設△ABC的面積為
3
,拋物線與x軸交于點P、Q,問是否精英家教網(wǎng)存在過P、Q兩點且與y軸相切的圓?若存在,求出圓的圓心坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:拋物線y=ax2+bx+c(a≠0)的圖象經(jīng)過點(1,0),一條直線y=ax+b,它們的系數(shù)之間滿足如下關系:a>b>c.
(1)求證:拋物線與直線一定有兩個不同的交點;
(2)設拋物線與直線的兩個交點為A、B,過A、B分別作x軸的垂線,垂足分別為A1、B1.令k=
c
a
,試問:是否存在實數(shù)k,使線段A1B1的長為4
2
.如果存在,求出k的值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•貴陽)已知:直線y=ax+b過拋物線y=-x2-2x+3的頂點P,如圖所示.
(1)頂點P的坐標是
(-1,4)
(-1,4)

(2)若直線y=ax+b經(jīng)過另一點A(0,11),求出該直線的表達式;
(3)在(2)的條件下,若有一條直線y=mx+n與直線y=ax+b關于x軸成軸對稱,求直線y=mx+n與拋物線y=-x2-2x+3的交點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:拋物線數(shù)學公式,其中a、b、c是△ABC的∠A、∠B、∠C的對邊.
(1)求證:拋物線與x軸必有兩個不同交點;
(2)設直線y=ax-bc與拋物線交于E、F兩點,與y軸交于點M,拋物線與y軸交于點N,若拋物線的對稱軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
(3)在(2)的條件下,設△ABC的面積為數(shù)學公式,拋物線與x軸交于點P、Q,問是否存在過P、Q兩點且與y軸相切的圓?若存在,求出圓的圓心坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年四川省綿陽市南山中學自主招生考試數(shù)學試卷(解析版) 題型:解答題

已知:拋物線,其中a、b、c是△ABC的∠A、∠B、∠C的對邊.
(1)求證:拋物線與x軸必有兩個不同交點;
(2)設直線y=ax-bc與拋物線交于E、F兩點,與y軸交于點M,拋物線與y軸交于點N,若拋物線的對稱軸為x=a,△MNE與△MNF的面積比為5:1,求證:△ABC是等邊三角形;
(3)在(2)的條件下,設△ABC的面積為,拋物線與x軸交于點P、Q,問是否存在過P、Q兩點且與y軸相切的圓?若存在,求出圓的圓心坐標,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案