【題目】圖中線段AB表示某工程的部分隧道,無人勘測飛機從隧道的一側點A出發(fā),沿著坡度為1:1.5的路線AE飛行,飛行至分界點C的正上方點D時,測得隧道另一側點B的俯角為23°,繼續(xù)飛行至點E,測得點B的俯角為45°,此時點E離地面的高度EF=800米.

(1)分別求隧道AC和BC段的長度;
(2)建工集團安排甲、乙兩個金牌施工隊分別從隧道兩頭向中間施工,甲隊負責AC段施工,乙隊負責BC段施工,乙每天的工作量是甲的2倍,兩隊同時開工5天后,甲隊將速度提高25%,乙隊將速度提高了150%,從而兩隊同時完成,求原計劃甲、乙兩隊每天各施工多少米.(參考數(shù)據(jù):tan23°≈0.4,cos23°≈0.9)

【答案】
(1)解:由題意可得,

tan∠A= ,∠DBC=23°,∠EBF=45°,

,EF=800,∠EFB=90°,∠EBF=45°,

∴AF=1200,設CD=2x,則AC=3x,BF=800,

∴AB=AF+BF=1200+800=2000,

,∠DBC=23°,

解得,x=250

∴3x=750,BC=2000﹣750=1250,

即隧道AC的長度是750米,BC段的長度是1250米


(2)解:設原計劃甲隊每天施工x米,乙隊每天施工y米,

解得

即原計劃甲隊每天施工175米,乙隊每天施工350米


【解析】(1)要求AC和BC的長度,只要求出AB的長度,根據(jù)坡度為1:1.5,EF的長度為800米,可以求得AF的長度,AC與CD的關系,根據(jù)點B的俯角為45°,可以求得BF的長度,從而可以求得AB的長度,進而求得隧道AC和BC段的長度;(2)根據(jù)題意可以知道原計劃甲、乙兩隊工作效率的關系,然后根據(jù)兩隊同時開工5天后,甲隊將速度提高25%,乙隊將速度提高了150%,從而兩隊同時完成,可以列出相應的方程組,從而可以解答本題.
【考點精析】根據(jù)題目的已知條件,利用分式方程的應用和關于坡度坡角問題的相關知識可以得到問題的答案,需要掌握列分式方程解應用題的步驟:審題、設未知數(shù)、找相等關系列方程、解方程并驗根、寫出答案(要有單位);坡面的鉛直高度h和水平寬度l的比叫做坡度(坡比).用字母i表示,即i=h/l.把坡面與水平面的夾角記作A(叫做坡角),那么i=h/l=tanA.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】定義一種新運算”:ab=2a﹣ab,比如1(﹣3)=2×1﹣1×(﹣3)=5

(1)求(﹣2)3的值;

(2)若(﹣3)x=(x+1)5,求x的值;

(3)若x1=2(1y),求代數(shù)式x+y+1的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC,把△ABC繞A點沿順時針方向旋轉得到△ADE,連接BD,CE交于點F.
(1)求證:△AEC≌△ADB;
(2)若AB=2,∠BAC=45°,當四邊形ADFC是菱形時,求BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知甲、乙兩人均從400米的環(huán)形跑道的A處出發(fā),各自以每秒6米和每秒8米的速度在跑道上跑步.

(1)若兩人同時出發(fā),背向而行,則經(jīng)過   秒鐘兩人第一次相遇;若兩人同時出發(fā),同向而行,則經(jīng)過   秒鐘乙第一次追上甲.

(2)若兩人同向而行,乙在甲出發(fā)10秒鐘后去追甲,經(jīng)過多少時間乙第二次追上甲.

(3)若讓甲先跑10秒鐘后乙開始跑,在乙用時不超過100的情況下,乙跑多少秒鐘時,兩人相距40米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A,B兩地相距2400米,甲、乙兩人分別從AB兩地同時出發(fā)相向而行,乙的速度是甲的2倍,已知乙到達A15分鐘后甲到達B地.

(1)求甲每分鐘走多少米?

(2)兩人出發(fā)多少分鐘后恰好相距480米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在某旅游景區(qū)上山的一條小路上,有一些斷斷續(xù)續(xù)的臺階,下圖是其中的甲、乙兩段臺階的示意圖,圖中的數(shù)字表示每一級臺階的高度(單位:cm).請你用所學過的有關統(tǒng)計知識,回答下列問題(數(shù)據(jù):15,16,16,14,14,15的方差,數(shù)據(jù):11,15,18,17,10,19的方差

(1)分別求甲、乙兩段臺階的高度平均數(shù);

(2)哪段臺階走起來更舒服?與哪個數(shù)據(jù)(平均數(shù)、中位數(shù)、方差和極差)有關?

(3)為方便游客行走,需要陳欣整修上山的小路,對于這兩段臺階路.在總高度及臺階數(shù)不變的情況下,請你提出合理的整修建議.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】七巧板是我們祖先的一項卓越創(chuàng)造,被譽為“東方魔板”,小明利用七巧板(如圖1所示)中各板塊的邊長之間的關系拼成一個凸六邊形(如圖2所示),則該凸六邊形的周長是cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知CDAB于點D,BEAC于點E,CD、BE交于點O,且AO平分BAC,則圖中的全等三角形共有( 。

A. 1對 B. 2對 C. 3對 D. 4對

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若反比例函數(shù) 的圖象經(jīng)過點(m , 3m),其中m≠0,則此反比例函數(shù)圖象經(jīng)過( 。
A.第一、三象限
B.第一、二象限
C.第二、四象限
D.第三、四象限

查看答案和解析>>

同步練習冊答案