【題目】二次函數y=ax2+bx+c(a≠0)圖象如圖所示,現有下列結論:①b2﹣4ac>0;②2a+b=0;③a﹣b+c>0;④b+c>0;⑤4a+2b+c<0,則其中結論正確的是( )
A. ①③⑤ B. ①②④ C. ②③⑤ D. ①②④⑤
科目:初中數學 來源: 題型:
【題目】“中國夢”是中華民族每一個人的夢,也是每一個中小學生的夢,各中小學開展經典誦讀活動,無疑是“中國夢”教育這一宏大樂章里的響亮音符,學校在經典誦讀活動中,對全校學生用A、B、C、D四個等級進行評價,現從中抽取若干個學生進行調查,繪制出了兩幅不完整的統(tǒng)計圖,請你根據圖中信息解答下列問題:
(1)共抽取了多少個學生進行調查?
(2)將圖甲中的折線統(tǒng)計圖補充完整.
(3)求出圖乙中B等級所占圓心角的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點B落在CD邊上的P點處.
(1)如圖1,已知折痕與邊BC交于點O,連接AP、OP、OA.
①求證:△OCP∽△PDA;
②若△OCP與△PDA的面積比為1:4,求邊AB的長.
(2)若圖1中的點P恰好是CD邊的中點,求∠OAB的度數;
(3)如圖2,在(1)的條件下,擦去折痕AO,線段OP,連結BP,動點M在線段AP⊥(點M與點F、A不重合),動點N在線段AB的延長線上,且BN=PM,連結MN交PB于點F,作ME⊥BP于點E.試問當點M、N在移動過程中,線段EF的長度是否發(fā)生變化?若變化,說明理由;說明理由;若不變,求出線段EF的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(8分)如圖,直線MN交⊙O于A,B兩點,AC是直徑,AD平分∠CAM交⊙O于點D,過點D作DE⊥MN于點E.
(1)求證:DE是⊙O的切線;
(2)若DE=6cm,AE=3cm,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(10分)在Rt△ABC中,∠BAC=,D是BC的中點,E是AD的中點.過點A作AF∥BC交BE的延長線于點F.
(1)求證:△AEF≌△DEB;
(2)證明四邊形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCFD 的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線經過A(-1,0)、B(4,5)兩點,過點B作BC⊥x軸,垂足為C.
(1)求拋物線的解析式;
(2)求tan∠ABO的值;
(3)點M是拋物線上的一個點,直線MN平行于y軸交直線AB于N,如果以M、N、B、C為頂點的四邊形是平行四邊形,求出點M的橫坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某工藝廠計劃一周生產工藝品2100個,平均每天生產300個,但實際每天生產量與計劃相比有出入.下表是某周的生產情況(超產記為正、減產記為負):
(1)寫出該廠星期一生產工藝品的數量;
(2)本周產量最多的一天比最少的一天多生產多少個工藝品?
(3)請求出該工藝廠在本周實際生產工藝品的數量;
(4)已知該廠實行每周計件工資制,每生產一個工藝品可得60元,若超額完成任務,則超過部分每個另獎50元,少生產一個扣80元.試求該工藝廠在這一周應付出的工資總額.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在矩形ABCD中,對角線AC,BD相交于點O,∠AOB=60°,AB=6.
求:(1)求這個矩形對角線的長;
(2)BC的長;
(3)矩形ABCD的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com