【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標(biāo)系,一條圓弧經(jīng)過(guò)網(wǎng)格點(diǎn)A、B、C,請(qǐng)?jiān)诰W(wǎng)格中進(jìn)行下列操作:

(1)請(qǐng)?jiān)趫D中確定該圓弧所在圓心D點(diǎn)的位置,D點(diǎn)坐標(biāo)為 ;

(2)連接AD、CD,求D的半徑及扇形DAC的圓心角度數(shù);

(3)若扇形DAC是某一個(gè)圓錐的側(cè)面展開(kāi)圖,求該圓錐的底面半徑.

【答案】(1)D(2,0)(2)扇形DAC的圓心角為90度;(3)

【解析】

試題分析:(1)找到AB,BC的垂直平分線的交點(diǎn)即為圓心坐標(biāo);

(2)利用勾股定理可求得圓的半徑;易得AOD≌△DEC,那么OAD=CDE,即可得到圓心角的度數(shù)為90°;

(3)求得弧長(zhǎng),除以2π即為圓錐的底面半徑.

解:(1)如圖;D(2,0)(4分)

(2)如圖;;

作CEx軸,垂足為E.

∵△AOD≌△DEC,

∴∠OAD=CDE,

∵∠OAD+ADO=90°,

∴∠CDE+ADO=90°

扇形DAC的圓心角為90度;

(3)弧AC的長(zhǎng)度即為圓錐底面圓的周長(zhǎng).l=,

設(shè)圓錐底面圓半徑為r,則

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,點(diǎn)OAC上,以OA為半徑的⊙OAB于點(diǎn)D,BD的垂直平分線交BC于點(diǎn)E,交BD于點(diǎn)F,連接DE.

(1)求證:直線DE是⊙O的切線;

(2)若AC=6,BC=8,OA=2,求線段ADDE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)為了吸引顧客,設(shè)立了一個(gè)如圖可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán),并規(guī)定:顧客每購(gòu)買(mǎi)300元的商品,就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)的機(jī)會(huì).如果轉(zhuǎn)盤(pán)停止后,指針正好對(duì)準(zhǔn)紅、綠或黃色區(qū)域,顧客就可以獲得100元、50元,20元的購(gòu)物券.(轉(zhuǎn)盤(pán)被等分成20個(gè)扇形),已知甲顧客購(gòu)物320.

1)他獲得購(gòu)物券的概率是多少?

2)他得到100元、50元、20元購(gòu)物券的概率分別是多少?

3)若要讓獲得20元購(gòu)物券的概率變?yōu)?/span>,則轉(zhuǎn)盤(pán)的顏色部分怎樣修改?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】射擊隊(duì)為從甲、乙兩名運(yùn)動(dòng)員中選拔一人參加比賽,對(duì)他們進(jìn)行了六次測(cè)試,測(cè)試成績(jī)?nèi)缦卤恚▎挝唬涵h(huán)):

第一次

第二次

第三次

第四次

第五次

第六次

平均成績(jī)

中位數(shù)

10

8

9

8

10

9

9

10

7

10

10

9

8

9.5

(1)完成表中填空① ;② ;

(2)請(qǐng)計(jì)算甲六次測(cè)試成績(jī)的方差;

(3)若乙六次測(cè)試成績(jī)方差為,你認(rèn)為推薦誰(shuí)參加比賽更合適,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)(2,-4)在正比例函數(shù)y=kx的圖象上。

(1)求k的值;

(2)若點(diǎn)(-1,m)在函數(shù)y=kx的圖象上,試求出m的值;

(3)若A(,y1),B(-2,y2),C(1,y3)都在此函數(shù)圖象上,試比較y1,y2,y3的大小。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如果一個(gè)數(shù)的平方等于,記為,這個(gè)數(shù)叫做虛數(shù)單位那么和我們所學(xué)的實(shí)數(shù)對(duì)應(yīng)起來(lái)就叫做復(fù)數(shù),表示為為實(shí)數(shù)),叫這個(gè)復(fù)數(shù)的實(shí)部, 叫做這個(gè)復(fù)數(shù)的虛部,它的加,減,乘法運(yùn)算與整式的加,減,乘法運(yùn)算類(lèi)似

例如計(jì)算:

1填空: =_________, =____________

2填空:_________; _________

3若兩個(gè)復(fù)數(shù)相等,則它們的實(shí)部和虛部必須分別相等,完成下列問(wèn)題:已知, ,( 為實(shí)數(shù)),求的值

4)試一試:請(qǐng)利用以前學(xué)習(xí)的有關(guān)知識(shí)將化簡(jiǎn)成的形式

5)解方程:x2 - 2x +4 = 0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】超速行駛是引發(fā)交通事故的主要原因.上周末,小鵬等三位同學(xué)在濱海大道紅樹(shù)林路段,嘗試用自己所學(xué)的知識(shí)檢測(cè)車(chē)速,觀測(cè)點(diǎn)設(shè)在到公路l的距離為100米的P處.這時(shí),一輛富康轎車(chē)由西向東勻速駛來(lái),測(cè)得此車(chē)從A處行駛到B處所用的時(shí)間為3秒,并測(cè)得∠APO=60°,BPO=45°,試判斷此車(chē)是否超過(guò)了每小時(shí)80千米的限制速度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】14分)如圖,已知拋物線)與x軸交于點(diǎn)A(1,0)和點(diǎn)B(﹣3,0),與y軸交于點(diǎn)C,且OC=OB.

(1)求此拋物線的解析式;

(2)若點(diǎn)E為第二象限拋物線上一動(dòng)點(diǎn),連接BE,CE,求四邊形BOCE面積的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo);

(3)點(diǎn)P在拋物線的對(duì)稱(chēng)軸上,若線段PA繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°后,點(diǎn)A的對(duì)應(yīng)點(diǎn)A′恰好也落在此拋物線上,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)D在⊙O的直徑AB的延長(zhǎng)線上,點(diǎn)C在⊙O上,AC=CD,ACD=120°

1)求證:CD是⊙O的切線;

2)若⊙O的半徑為2,求圖中陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案