如圖,方格紙中每個小方格都是邊長為1的正方形,我們把以格點連線為邊的多邊形稱為“格點多邊形”.如圖(一)中四邊形ABCD就是一個“格點四邊形”.
(1)作出四邊形ABCD關(guān)于直線BD對稱的四邊形A′B′C′D′;
(2)求圖(一)中四邊形ABCD的面積;
(3)在圖(二)方格紙中畫一個格點三角形EFG,使△EFG的面積等于四邊形ABCD的面積且△EFG為軸對稱圖形.
分析:(1)分別找到A、C關(guān)于BD的對稱點,順次連接即可;
(2)分成兩個三角形的面積進行計算即可;
(3)畫一個面積為12的等腰三角形,即底和高相乘為24即可.
解答:解:(1)如圖所示:

(2)S四邊形ABCD=S△ABC+S△ADC=
1
2
×4×2+
1
2
×4×4=4+8=12;
(3)如圖所示:
點評:本題考查了利用軸對稱設(shè)計圖案的知識,注意格點不規(guī)則圖形面積的求解方法,可以用“構(gòu)圖法”,也可以用分割法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,方格紙中每個小方格都是邊長為1的正方形,我們把以格點連線為邊的多邊形稱為“格點多邊形”,如圖1中四邊形ABCD就是一個“格點四邊形”.
(1)求圖1中四邊形ABCD的面積;
(2)在圖2方格紙中畫一個格點三角形EFG,使△EFG的面積等于四邊形ABCD的面積且為軸對稱圖形.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,方格紙中每個小正方形的邊長都是單位1.
(1)平移已知Rt△ABC,使直角頂點C與點O重合,畫出平移后的△A1OB1(A與A1對應(yīng))
(2)將平移后的三角形繞點O逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的圖形.
(3)求旋轉(zhuǎn)過程中動點A1所經(jīng)過的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,方格紙中每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點在格點上,點B的坐標(biāo)為(-4.-3).
(1)將△ABC向上平移5個單位,作出△A′B′C′,并寫出C′的坐標(biāo);
(2)在網(wǎng)格中以O(shè)為位似中心畫出△ABC的一個位似圖形△A″B″C″,且△ABC與△A″B″C″的位似比為1:2,并寫出B″的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,方格紙中每個小方格都是邊長為1的正方形,
(1)在圖一中將其中的△ABC繞點D按順時針方向旋轉(zhuǎn)90°,得到對應(yīng)△A'B'C'.
(a)請你在方格紙中畫出△A'B'C';(b)圖一中線段C C'的長度為
2
2
2
2

(2)在圖二中,以線段m為一邊畫菱形,要求菱形的頂點均在格點上(畫一個即可).
(3)在圖三中,平移a、b、c中的兩條線段(需標(biāo)注字母),使它們與線段n構(gòu)成以n為一邊的等腰直角三角形(畫一個即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,方格紙中每個小正方形的邊長都是單位1,△ABC和點S的位置如圖所示.
(1)將△ABC向右平移4個單位得到△A1B1C1,畫出平移后的圖形;
(2)將△ABC繞點S按順時針方向旋轉(zhuǎn)90°得到△A2B2C2,畫出旋轉(zhuǎn)后的圖形.

查看答案和解析>>

同步練習(xí)冊答案