已知A=2x+y,B=2x﹣y,計算A2﹣B2= 


8xy 

【考點】因式分解-運用公式法.

【分析】首先利用平方差進行分解可得A2﹣B2=(A+B)(A﹣B),然后再代入A=2x+y,B=2x﹣y即可.

【解答】解:A2﹣B2=(A+B)(A﹣B)=[(2x+y)+(2x﹣y)][(2x+y)﹣(2x﹣y)]=4x•2y=8xy,

故答案為:8xy.

【點評】此題主要考查了公式法分解因式,關(guān)鍵是掌握平方差公式a2﹣b2=(a+b)(a﹣b).

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


不等式組的解集是 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


目前節(jié)能燈在城市已基本普及,今年云南省面向縣級及農(nóng)村地區(qū)推廣,為相應(yīng)號召,某商場計劃用3800元購進節(jié)能燈120只,這兩種節(jié)能燈的進價、售價如下表:

 進價(元/只)

 售價(元/只)

 甲型

 25

 30

 乙型

 45

 60

(1)求甲、乙兩種節(jié)能燈各進多少只?

(2)全部售完120只節(jié)能燈后,該商場獲利潤多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


下列運算正確的是( 。

A.a(chǎn)2+a2=a4  B.a(chǎn)6÷a3=a2 C.a(chǎn)3×a2=a5 D.(a3b)2=a5b3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,△ABC與△ABD中,AD與BC相交于O點,∠1=∠2,請你添加一個條件(不再添加其它線段,不再標注或使用其他字母),使AC=BD,并給出證明.

你添加的條件是:   

證明:   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論:①a>0;②c>0;③b2﹣4ac>0,其中正確的個數(shù)是( 。

A.0個  B.1個   C.2個  D.3個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


計算(﹣2)×3所得結(jié)果正確的是(  )

A.5       B.6       C.﹣5   D.﹣6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知x、y滿足方程組:,則(x+y)xy的值為 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


隨著人們生活質(zhì)量的提高,凈水器已經(jīng)慢慢走入了普通百姓家庭,某電器公司銷售每臺進價分別為2000元、1700元的A、B兩種型號的凈水器,下表是近兩周的銷售情況:

 銷售時段

 銷售數(shù)量

 銷售收入

 A種型號

 B種型號

 第一周

 3臺

 5臺

 18000元

 第二周

 4臺

 10臺

 31000元

(1)求A,B兩種型號的凈水器的銷售單價;

(2)若電器公司準備用不多于54000元的金額在采購這兩種型號的凈水器共30臺,求A種型號的凈水器最多能采購多少臺?

(3)在(2)的條件下,公司銷售完這30臺凈水器能否實現(xiàn)利潤為12800元的目標?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案