如圖,某倉(cāng)儲(chǔ)中心有一斜坡AB,其坡度為i=1:2,頂部A處的高AC為4m,B、C在同一水平地面上.
(1)求斜坡AB的水平寬度BC;
(2)矩形DEFG為長(zhǎng)方體貨柜的側(cè)面圖,其中DE=2.5m,EF=2m,將該貨柜沿斜坡向上運(yùn)送,當(dāng)BF=3.5m時(shí),求點(diǎn)D離地面的高.(≈2.236,結(jié)果精確到0.1m)
【考點(diǎn)】解直角三角形的應(yīng)用-坡度坡角問(wèn)題.
【分析】(1)根據(jù)坡度定義直接解答即可;
(2)作DS⊥BC,垂足為S,且與AB相交于H.證出∠GDH=∠SBH,根據(jù)=,得到GH=1m,利用勾股定理求出DH的長(zhǎng),然后求出BH=5m,進(jìn)而求出HS,然后得到DS.
【解答】解:(1)∵坡度為i=1:2,AC=4m,
∴BC=4×2=8m.
(2)作DS⊥BC,垂足為S,且與AB相交于H.
∵∠DGH=∠BSH,∠DHG=∠BHS,
∴∠GDH=∠SBH,
∴=,
∵DG=EF=2m,
∴GH=1m,
∴DH==m,BH=BF+FH=3.5+(2.5﹣1)=5m,
設(shè)HS=xm,則BS=2xm,
∴x2+(2x)2=52,
∴x=m,
∴DS=+=2m≈4.5m.
【點(diǎn)評(píng)】本題考查了解直角三角形的應(yīng)用﹣﹣坡度坡角問(wèn)題,熟悉坡度坡角的定義和勾股定理是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,Rt△AOB中,AB⊥OB,且AB=OB=3,設(shè)直線x=t截此三角形所得陰影部分的面積為S,則S與t之間的函數(shù)關(guān)系的圖象為下列選項(xiàng)中的( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)不等的正方形依次排列,每個(gè)正方形都有一個(gè)頂點(diǎn)落在函數(shù)y=x的圖象上,從左向右第3個(gè)正方形中的一個(gè)頂點(diǎn)A的坐標(biāo)為(8,4),陰影三角形部分的面積從左向右依次記為S1、S2、S3、…、Sn,則Sn的值為 .(用含n的代數(shù)式表示,n為正整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
(1)數(shù)學(xué)課上,老師出了一道題,如圖①,Rt△ABC中,∠C=90°,,求證:∠B=30°,請(qǐng)你完成證明過(guò)程.
(2)如圖②,四邊形ABCD是一張邊長(zhǎng)為2的正方形紙片,E、F分別為AB、CD的中點(diǎn),沿過(guò)點(diǎn)D的抓痕將紙片翻折,使點(diǎn)A落在EF上的點(diǎn)A′處,折痕交AE于點(diǎn)G,請(qǐng)運(yùn)用(1)中的結(jié)論求∠ADG的度數(shù)和AG的長(zhǎng).
(3)若矩形紙片ABCD按如圖③所示的方式折疊,B、D兩點(diǎn)恰好重合于一點(diǎn)O(如圖④),當(dāng)AB=6,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
關(guān)于x的方程(a﹣5)x2﹣4x﹣1=0有實(shí)數(shù)根,則a滿足( 。
A.a(chǎn)≥1 B.a(chǎn)>1且a≠5 C.a(chǎn)≥1且a≠5 D.a(chǎn)≠5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點(diǎn)C與原點(diǎn)O重合,點(diǎn)B在y軸的正半軸上,點(diǎn)A在反比例函數(shù)y=(k>0,x>0)的圖象上,點(diǎn)D的坐標(biāo)為(4,3).
(1)求k的值;
(2)若將菱形ABCD沿x軸正方向平移,當(dāng)菱形的頂點(diǎn)D落在函數(shù)y=(k>0,x>0)的圖象上時(shí),求菱形ABCD沿x軸正方向平移的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
若關(guān)于a,b的多項(xiàng)式5(a2﹣2ab+b2)﹣(a2+mab﹣b2)中不含有ab項(xiàng),則m= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com