如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,E為AB上一點,且ED平分∠ADC,EC平分∠BCD,則下列結(jié)論:①DE⊥EC;②點E是AB中點;③AD•BC=BE•DE;④CD=AD+BC.其中正確的有
①②④
①②④
分析:根據(jù)直角梯形、等腰三角形的判定與性質(zhì)以及全等三角形的判定與性質(zhì)進行分析、判斷,并作出正確的選擇.
解答:解:①:∵AD∥BC,∠ADC+∠BCD=180°
∵ED平分∠ADC,EC平分∠BCD,
∴∠ADE=∠CDE,∠DCE=BCE
∴∠DCE+∠CDE=90°
∴DE⊥EC;
故本選項正確;

②延長DE交CB的延長線于點F.
∵AD∥BC,DE是∠ADC的角平分線,
∴∠CDF=∠ADE=∠DFC,
∴CD=CF,
∴△CDF是等腰三角形;
又由①知DE⊥EC,
∴DE=FE,
又∵∠AED=∠BEF,
∴△BEF≌△AED,
∴AE=EB,
∴點E是AB的中點;
故本選項正確;

③由②知,△BEF≌△AED,∴△BEF∽△AED,
∴AD•BC=BE•AE
故本選項錯誤;

④∵△BEF≌△AED,
∴AD=BF;
又∵CD=CF,
∴CD=AD+BC;
故本選項正確;
綜上所述,①②④正確;
故答案是:①②④.
點評:本題主要考查了直角梯形的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì).解答該題時,利用了平行線、角平分線以及等腰三角形的性質(zhì).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在直角梯形ABCD中,AD∥BC,CD⊥BC,E為BC邊上的點.將直角梯形ABCD沿對角線BD折疊,使△ABD與△EBD重合(如圖中陰影所示).若∠A=130°,AB=4cm,則梯形ABCD的高CD≈
3.1
cm.(結(jié)果精確到0.1cm)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F(xiàn)點以2cm/秒的速度在線段AB上由A向B勻速運動,E點同時以1cm/秒的速度在線段BC上由B向C勻速運動,設運動時間為t秒(0<t<5).
(1)求證:△ACD∽△BAC;
(2)求DC的長;
(3)設四邊形AFEC的面積為y,求y關于t的函數(shù)關系式,并求出y的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1998•大連)如圖,在直角梯形ABCD中.AD∥BC,DC⊥BC,且BC=3AD.以梯形的高AE為直徑的⊙O交AB于點F,交CD于點G、H.過點F引⊙O的切線交BC于點N.
(1)求證:BN=EN;
(2)求證:4DH•HC=AB•BF;
(3)設∠GEC=α.若tan∠ABC=2,求作以tanα、cotα為根的一元二次方程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中,DC∥AB,∠ADC=90°,AB=3a,CD=2a,AD=2,點E、F分別是腰AD、BC上的動點,點G在AB上,且四邊形AEFG是矩形.設FG=x,矩形AEFG的面積為y.
(1)求y與x之間的函數(shù)關式,并寫出自變量x的取值范圍;
(2)在腰BC上求一點F,使梯形ABCD的面積是矩形AEFG的面積的2倍,并求出此時BF的長;
(3)當∠ABC=60°時,矩形AEFG能否為正方形?若能,求出其邊長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在直角梯形ABCD中,AB∥CD,∠C=90°,AB=6cm,CD=10cm,AD=5cm,動點P、Q分別從點A、C同時出發(fā),點P以2cm/s的速度向點B移動,點Q以1cm/s的速度向點D移動,當一個動點到達終點時另一個動點也隨之停止運動.
(1)經(jīng)過幾秒鐘,點P、Q之間的距離為5cm?
(2)連接PD,是否存在某一時刻,使得PD恰好平分∠APQ?若存在,求出此時的移動時間;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案