【題目】某通訊公司推出了移動(dòng)電話的兩種計(jì)費(fèi)方式(詳情見下表). 設(shè)一個(gè)月內(nèi)使用移動(dòng)電話主叫的時(shí)間為t分鐘

月使用費(fèi)

主叫限定時(shí)間

主叫超時(shí)費(fèi)

被叫

方式一

58

150分鐘

0.25/

免費(fèi)

方式二

88

350分鐘

0.19/

免費(fèi)

t為正整數(shù)),請(qǐng)根據(jù)表中提供的信息回答下列問題:

1)方式一中,當(dāng)t超過150分鐘時(shí),該月費(fèi)用表示為: 元(用含t的代數(shù)式表示);方式二中,當(dāng)t超過350分鐘時(shí),該月費(fèi)用表示為: 元(用含t的代數(shù)式表示).

2)當(dāng)t=300時(shí),哪種計(jì)費(fèi)方式的費(fèi)用較。空(qǐng)作出判斷,并說明理由.

【答案】1,

2)第二種更省錢,理由見詳解.

【解析】

1)根據(jù)表格所給的信息,分別表示出費(fèi)用;
2)把t=300代入,找出比較省錢的方式.

解:(1)方式一:,( ),
方法二:,( );
2)當(dāng)t=300時(shí),
方式一費(fèi)用:(元),
方法二費(fèi)用:因?yàn)椴怀?/span>350分鐘,所以只收88元,
95.588,
∴第二種更省錢.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與x軸交于點(diǎn)A,與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)B(2,n),過點(diǎn)B作BC⊥x軸于點(diǎn)C,點(diǎn)P(3n﹣4,1)是該反比例函數(shù)圖象上的一點(diǎn),且∠PBC=∠ABC,求反比例函數(shù)和一次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,的中點(diǎn),若動(dòng)點(diǎn)1的速度從點(diǎn)出發(fā),沿著的方向運(yùn)動(dòng),設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為秒(),連接,當(dāng)是直角三角形時(shí),的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一張寬為6cm的平行四邊形紙帶ABCD如圖1所示,AB=10cm,小明用這張紙帶將底面周長(zhǎng)為10cm直三棱柱紙盒的側(cè)面進(jìn)行包貼(要求包貼時(shí)沒有重疊部分). 小明通過操作后發(fā)現(xiàn)此類包貼問題可將直三棱柱的側(cè)面展開進(jìn)行分析.

(1)若紙帶在側(cè)面纏繞三圈,正好將這個(gè)直三棱柱紙盒的側(cè)面全部包貼滿.則紙帶AD的長(zhǎng)度為____ cm;

(2)若AD=100cm,紙帶在側(cè)面纏繞多圈,正好將這個(gè)直三棱柱紙盒的側(cè)面全部包貼滿.則這個(gè)直三棱柱紙盒的高度是_____cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形ABCD中,ABCD,點(diǎn)E、F、G分別是BD、AC、DC的中點(diǎn).已知兩底差是6,兩腰和是12,則EFG的周長(zhǎng)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的運(yùn)算程序中,若開始輸入的x值為 48,我們發(fā)現(xiàn)第一次輸出的結(jié)果為 24,第二次輸出的結(jié)果為 12,···,則第 2012 次輸出的結(jié)果為(

A.3B.6C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC,把△ABC繞A點(diǎn)沿順時(shí)針方向旋轉(zhuǎn)得到△ADE,連接BD,CE交于點(diǎn)F.

(1)求證:△AEC≌△ADB;

(2)若AB=2,∠BAC=45°,當(dāng)四邊形ADFC是菱形時(shí),求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于一元二次方程x2+bx+c0的四個(gè)命題

①當(dāng)c0b≠0時(shí),這個(gè)方程一定有兩個(gè)不相等的實(shí)數(shù)根;

②當(dāng)c≠0時(shí),若p是方程x2+bx+c0的一個(gè)根,則是方程cx2+bx+10的一個(gè)根;

③若c0,則一定存在兩個(gè)實(shí)數(shù)mn,使得m2+mb+c0n2+nb+c;

④若pq是方程的兩個(gè)實(shí)數(shù)根,則pq

其中是假命題的序號(hào)是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面的統(tǒng)計(jì)圖反映了我國(guó)郵電業(yè)務(wù)(含郵政業(yè)務(wù)與電信業(yè)務(wù))總量的情況.

(以上數(shù)據(jù)來源于國(guó)家統(tǒng)計(jì)局)

根據(jù)統(tǒng)計(jì)圖提供的信息,下列有關(guān)我國(guó)郵電業(yè)務(wù)總量推斷不合理的是(

A. 2018年,電信業(yè)務(wù)總量比郵政業(yè)務(wù)總量的5倍還多

B. 20112018年,郵政業(yè)務(wù)總量與電信業(yè)務(wù)總量都是逐年增長(zhǎng)的

C. 2017年相比,2018年郵政業(yè)務(wù)總量的增長(zhǎng)率超過20%

D. 20112018年,電信業(yè)務(wù)總量年增長(zhǎng)的平均值大于郵政業(yè)務(wù)總量年增長(zhǎng)的平均值

查看答案和解析>>

同步練習(xí)冊(cè)答案