【題目】在平面直角坐標(biāo)系中,A(0,1),B(5,0)將線段AB向上平移到DC,如圖1,CD交y軸于點(diǎn)E,D點(diǎn)坐標(biāo)為(﹣2,a)
(1)直接寫(xiě)出點(diǎn)C坐標(biāo)(C的縱坐標(biāo)用a表示);
(2)若四邊形ABCD的面積為18,求a的值;
(3)如圖2,F為AE延長(zhǎng)線上一點(diǎn),H為OB延長(zhǎng)線上一點(diǎn),EP平分∠CEF,BP平分∠ABH,求∠EPB的度數(shù).
【答案】(1)C(3,a﹣1).(2)a=5.(3)∠EPB=45°.
【解析】
(1)利用平移的性質(zhì)解決問(wèn)題即可.
(2)根據(jù)S平行四邊形ABCD=S△CDH+S△CBH﹣S△ADH﹣S△AHB,構(gòu)建方程即可解決問(wèn)題.
(3)如圖2中 作AM∥EP交BP于M.求出∠AMB即可解決問(wèn)題.
解:(1)∵四邊形ABCD是平行四邊形,
∴AD=BC,AD∥BC,
∵點(diǎn)A向上平移a﹣1個(gè)單位,向左平移2個(gè)單位得到點(diǎn)D,
∴點(diǎn)B(5,0)向上平移a﹣1個(gè)單位,向左平移2個(gè)單位得到點(diǎn)C,
∴C(3,a﹣1).
(2)如圖1中,如圖1中,作DH⊥x軸于H.連接CH,AH.
∵S平行四邊形ABCD=S△CDH+S△CBH﹣S△ADH﹣S△AHB,
∴a5+×7(a﹣1)﹣a2﹣×7×1=18,
解得a=5.
(3)如圖2中 作AM∥EP交BP于M.
∵EC∥AB,
∴∠FEC=∠FAB,
∵PE∥AM,
∴∠FEP=∠FAM,
∵EP平分∠FEC,
∴∠FEP=∠FEC,
∴∠FAM=∠FAB,
∵BP平分∠ABH,
∴∠ABP=∠ABH,
∴∠MAB+∠ABM=(∠FAB+∠ABH)=(∠AOB+∠ABO+∠OAB+∠AOB)=(180°+90°)=135°,
∴∠AMB=180°﹣(∠MAB+∠ABM)=45°,
∵AM∥PE,
∴∠EPB=∠AMB=45°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是菱形,點(diǎn)A的坐標(biāo)為(0,),分別以A,B為圓心,大于AB的長(zhǎng)為半徑作弧,兩弧交于點(diǎn)E,F,直線EF恰好經(jīng)過(guò)點(diǎn)D,則點(diǎn)D的坐標(biāo)為( )
A. (2,2)B. (2,)C. (,2)D. (+1,
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=-x+1的圖象與x軸、y軸分別交于點(diǎn)A、B,以線段AB為邊在第一象限作等邊△ABC.
(1)若點(diǎn)C在反比例函數(shù)y=的圖象上,求該反比例函數(shù)的解析式;
(2)點(diǎn)P(2,m)在第一象限,過(guò)點(diǎn)P作x軸的垂線,垂足為D,當(dāng)△PAD與△OAB相似時(shí),P點(diǎn)是否在(1)中反比例函數(shù)圖象上?如果在,求出P點(diǎn)坐標(biāo);如果不在,請(qǐng)加以說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】填空,將理由補(bǔ)充完整.
如圖,CF⊥AB于F,DE⊥AB于E,∠1+∠EDC=180°,求證:FG∥BC
證明:∵CF⊥AB,DE⊥AB(已知)
∴∠BED=∠BFC=90°(垂直的定義)
∴ED∥FC ( )
∴∠2=∠3 ( )
∵∠1+∠EDC=180°(已知)
又∵∠2+∠EDC=180°(平角的定義)
∴∠1=∠2 ( )
∴∠1=∠3(等量代換)
∴FG∥BC ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】威麗商場(chǎng)銷售A、B兩種商品,售出1件A種商品和4件B種商品所得利潤(rùn)為600元;售出3件A種商品和5件B種商品所得利潤(rùn)為1100元.
(1)求每件A種商品和每件B種商品售出后所得利潤(rùn)分別為多少元?
(2)由于需求量大,A、B兩種商品很快售完,威麗商場(chǎng)決定再一次購(gòu)進(jìn)A、B兩種商品共34件,如果將這34件商品全部售完后所得利潤(rùn)不低于4000元,那么威麗商場(chǎng)至少需購(gòu)進(jìn)多少件A種商品?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著“互聯(lián)網(wǎng)+”時(shí)代的到來(lái),一種新型打車方式受到大眾歡迎,該打車方式的總費(fèi)用由里程費(fèi)和耗時(shí)費(fèi)組成,其中里程費(fèi)按x元/公里計(jì)算,耗時(shí)費(fèi)按y元/分鐘計(jì)算(總費(fèi)用不足9元按9元計(jì)價(jià)).小明、小剛兩人用該打車方式出行,按上述計(jì)價(jià)規(guī)則,其打車總費(fèi)用、行駛里程數(shù)與打車時(shí)間如表:
時(shí)間(分鐘) | 里程數(shù)(公里) | 車費(fèi)(元) | |
小明 | 8 | 8 | 12 |
小剛 | 12 | 10 | 16 |
(1)求x,y的值;
(2)如果小華也用該打車方式,打車行駛了11公里,用了14分鐘,那么小華的打車總費(fèi)用為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象在第一象限交于點(diǎn)A(4,3),與y軸的負(fù)半軸交于點(diǎn)B,且OA=OB.
(1)求一次函數(shù)y=kx+b和y=的表達(dá)式;
(2)已知點(diǎn)C在x軸上,且△ABC的面積是8,求此時(shí)點(diǎn)C的坐標(biāo);
(3)反比例函數(shù)y=(1≤x≤4)的圖象記為曲線C1,將C1向右平移3個(gè)單位長(zhǎng)度,得曲線C2,則C1平移至C2處所掃過(guò)的面積是_________.(直接寫(xiě)出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,E,F(xiàn)是對(duì)角線BD上的點(diǎn),∠1=∠2.
求證:(1)BE=DF;(2)AF∥CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知線段AB,點(diǎn)C在直線AB上,D為線段BC的中點(diǎn).
(1)若AB=8 ,AC=2,求線段CD的長(zhǎng).
(2)若點(diǎn)E是線段AC的中點(diǎn),直接寫(xiě)出線段DE和AB的數(shù)量關(guān)系是________________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com