如圖,拋物線經(jīng)過了邊長(zhǎng)為1的正方形ABOC的三個(gè)頂點(diǎn)A,B,C,則拋物線的解析式為________.

y=-x2+
分析:本題可先根據(jù)正方形的邊長(zhǎng)求出A、B、C三點(diǎn)的坐標(biāo),然后用待定系數(shù)法求出拋物線的解析式.
解答:解:連接BC,交OA于D,則BC⊥OA
在等腰Rt△OAB中,AB=1,∠BAO=∠AOB=45°
∴OA=,OD=BD=CD=
∴A、B、C三點(diǎn)的坐標(biāo)分別是(0,)、(-,)、(,
設(shè)過A、B、C三點(diǎn)的函數(shù)解析式y(tǒng)=ax2+bx+c,可得
,解得
所以拋物線的解析式為:y=-x2+
點(diǎn)評(píng):本題主要考查了二次函數(shù)解析式的確定以及正方形的性質(zhì),根據(jù)正方形的性質(zhì)和邊長(zhǎng)求出A、B、C三點(diǎn)的坐標(biāo)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,拋物線經(jīng)過了邊長(zhǎng)為1的正方形ABOC的三個(gè)頂點(diǎn)A,B,C,則拋物線的解析式為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

巳知二次函數(shù)y=a(x2-6x+8)(a>0)的圖象與x軸分別交于點(diǎn)A、B,與y軸交于點(diǎn)C.點(diǎn)D是拋物線的頂點(diǎn).
(1)如圖①.連接AC,將△OAC沿直線AC翻折,若點(diǎn)O的對(duì)應(yīng)點(diǎn)0'恰好落在該拋物線的 對(duì)稱軸上,求實(shí)數(shù)a的值;
(2)如圖②,在正方形EFGH中,點(diǎn)E、F的坐標(biāo)分別是(4,4)、(4,3),邊HG位于邊EF的 右側(cè).小林同學(xué)經(jīng)過探索后發(fā)現(xiàn)了一個(gè)正確的命題:“若點(diǎn)P是邊EH或邊HG上的任意一點(diǎn),則四條線段PA、PB、PC、PD不能與任何一個(gè)平行四邊形的四條邊對(duì)應(yīng)相等 (即這四條線段不能構(gòu)成平行四邊形).“若點(diǎn)P是邊EF或邊FG上的任意一點(diǎn),剛才的結(jié)論是否也成立?請(qǐng)你積極探索,并寫出探索過程;
(3)如圖②,當(dāng)點(diǎn)P在拋物線對(duì)稱軸上時(shí),設(shè)點(diǎn)P的縱坐標(biāo)t是大于3的常數(shù),試問:是否存在一個(gè)正數(shù)a,使得四條線段PA、PB、PC、PD與一個(gè)平行四邊形的四條邊對(duì)應(yīng)相等 (即這四條線段能構(gòu)成平行四邊形)?請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,平面直角坐標(biāo)系中,在第一象限的矩形ABCO的邊OA在y正半軸上,OC在x正半軸上,點(diǎn)D是線段OC上一點(diǎn),過點(diǎn)D作DE⊥AD交直線BC于點(diǎn)E,以A、D、E為頂點(diǎn)作矩形ADEF.
(1)求證:△AOD∽△DCE;
(2)若點(diǎn)A坐標(biāo)為(O,4),點(diǎn)C坐標(biāo)為(7,0).
①當(dāng)點(diǎn)D的坐標(biāo)為(5,0)時(shí),若拋物線經(jīng)過A、F、B三點(diǎn),求該拋物線的解析式;
②當(dāng)點(diǎn)D(k,0)是線段OC(不包括端點(diǎn))上任意一點(diǎn),則點(diǎn)F仍在①中所求的拋物線上嗎?請(qǐng)說(shuō)明理由;
③當(dāng)點(diǎn)A的坐標(biāo)是(0,m),點(diǎn)C的坐標(biāo)是(n,0),當(dāng)點(diǎn)D在線段OC上運(yùn)動(dòng)時(shí),是否了存在一條拋物線,使得點(diǎn)F始終落在該拋物線上?若存在,請(qǐng)直接寫出該拋物線的解析式(用含m、n表示);若不存在,請(qǐng)說(shuō)明理由.
(3)在第(2)題②的條件下,若點(diǎn)D(k,0)是在x軸上,且不在線段OC上的任意一點(diǎn),其他條件不變,則點(diǎn)F是否還在①中所求的拋物線上?如果在,請(qǐng)以點(diǎn)D(k,0)在x負(fù)半軸上為例畫出示意圖(畫在備用圖上),并說(shuō)明理由;如果不在,請(qǐng)舉反例說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年九年級(jí)數(shù)學(xué)下冊(cè)綜合檢測(cè)卷(三)(解析版) 題型:填空題

如圖,拋物線經(jīng)過了邊長(zhǎng)為1的正方形ABOC的三個(gè)頂點(diǎn)A,B,C,則拋物線的解析式為   

查看答案和解析>>

同步練習(xí)冊(cè)答案