已知:在△ABC中,∠B為銳角,,AB=15,AC=13,求BC的長(zhǎng).
14或4.

試題分析:過點(diǎn)A作AD⊥BC于D,解直角三角形ABD可求出BD,AD的長(zhǎng),解直角三角形ACD可求出CD的長(zhǎng).進(jìn)而求BC的長(zhǎng).
試題解析:如圖,過點(diǎn)A作AD⊥BC于D.
在△ADB中,∠ADB=90°,
,AB=15,∴AD=AB•sinB=15×=12.
由勾股定理,可得
在△ADC中,∠ADC=90°,AC=13,AD=12,
由勾股定理,可得
∵AD<AC<AB,
∴當(dāng)B、C兩點(diǎn)在AD異側(cè)時(shí),可得BC=BD+CD=9+5=14;當(dāng)B、C兩點(diǎn)在AD同側(cè)時(shí),可得BC=BD-CD=9-5=4.
∴BC邊的長(zhǎng)為14或4.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD是矩形,對(duì)角線AC、BD相交于點(diǎn)O,BE∥AC交DC的延長(zhǎng)線于點(diǎn)E.

(1)求證:BD=BE;
(2)若ÐDBC=30°,CD=4,求四邊形ABED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:計(jì)算題

計(jì)算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在Rt△ABC中,∠C=90°,a=4,b=3,則sinA的值是(   )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(-,1),點(diǎn)B是x軸上的一動(dòng)點(diǎn),以AB為邊作等邊三角形ABC.當(dāng)點(diǎn)C(x,y)在第一象限內(nèi)時(shí),下列圖象中,可以表示y與x的函數(shù)關(guān)系的是(   )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,∠XOY=90°,OW平分∠XOY,PA⊥OX,PB⊥OY,PC⊥OW.若OA+OB+OC=1,則OC=(   )
A.2-B.-1C.6-D.-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

校車安全是近幾年社會(huì)關(guān)注的熱點(diǎn)問題,安全隱患主要是超速和超載.某中學(xué)九年級(jí)數(shù)學(xué)活動(dòng)小組進(jìn)行了測(cè)試汽車速度的實(shí)驗(yàn),如圖,先在筆直的公路l旁選取一點(diǎn)A,在公路l上確定點(diǎn)B、C,使得AC⊥l,∠BAC=60°,再在AC上確定點(diǎn)D,使得∠BDC=75°,測(cè)得AD=40米,已知本路段對(duì)校車限速是50千米/時(shí),若測(cè)得某校車從B到C勻速行駛用時(shí)10秒,問這輛車在本路段是否超速?請(qǐng)說明理由(參考數(shù)據(jù):=1.41,=1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

cos60°的值為(    )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知在中,,,,那么的長(zhǎng)為(   ).
A.B.;C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案