已知:如圖,▱ABCD中,O是CD的中點,連接AO并延長,交BC的延長線于點E.
(1)求證:△AOD≌△EOC;
(2)連接AC,DE,當∠B=∠AEB= °時,四邊形ACED是正方形?請說明理由.
證明:(1)∵四邊形ABCD是平行四邊形,
∴AD∥BC.
∴∠D=∠OCE,∠DAO=∠E.
∵O是CD的中點,
∴OC=OD,
在△ADO和△ECO中,
,
∴△AOD≌△EOC(AAS);
(2)當∠B=∠AEB=45°時,四邊形ACED是正方形.
∵△AOD≌△EOC,
∴OA=OE.
又∵OC=OD,
∴四邊形ACED是平行四邊形.
∵∠B=∠AEB=45°,
∴AB=AE,∠BAE=90°.
∵四邊形ABCD是平行四邊形,
∴AB∥CD,AB=CD.
∴∠COE=∠BAE=90°.
∴▱ACED是菱形.
∵AB=AE,AB=CD,
∴AE=CD.
∴菱形ACED是正方形.
科目:初中數(shù)學 來源: 題型:
某茶廠用甲、乙兩臺分裝機分裝某種茶葉(每袋茶葉的標準質(zhì)量為200g).為了監(jiān)控分裝質(zhì)量,該廠從它們各自分裝的茶葉中隨機抽取了50袋,測得它們的實際質(zhì)量分析如下:
| 平均數(shù)(g) | 方差 |
甲分裝機 | 200 | 16.23 |
乙分裝機 | 200 | 5.84 |
則這兩臺分裝機中,分裝的茶葉質(zhì)量更穩(wěn)定的是 (填“甲”或“乙”).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
在菱形ABCD和正三角形BGF中,∠ABC=60°,P是DF的中點,連接PG、PC.
(1)如圖1,當點G在BC邊上時,易證:PG=PC.(不必證明)
(2)如圖2,當點F在AB的延長線上時,線段PC、PG有怎樣的數(shù)量關(guān)系,寫出你的猜想,并給與證明;
(3)如圖3,當點F在CB的延長線上時,線段PC、PG又有怎樣的數(shù)量關(guān)系,寫出你的猜想(不必證明).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖.在正方形ABCD的邊長為3,以A為圓心,2為半徑作圓。訢為圓心,3為半徑作圓。魣D中陰影部分的面積分為S1、S2.則S1﹣S2= 。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com