(2013•德州)某區(qū)在實(shí)施居民用水額定管理前,對(duì)居民生活用水情況進(jìn)行了調(diào)查,下表是通過(guò)簡(jiǎn)單隨機(jī)抽樣獲得的50個(gè)家庭去年月平均用水量(單位:噸),并將調(diào)查數(shù)據(jù)進(jìn)行如下整理:
4.7  2.1  3.1  2.3  5.2  2.8  7.3  4.3  4.8  6.7
4.5  5.1  6.5  8.9  2.2  4.5  3.2  3.2  4.5  3.5
3.5  3.5  3.6  4.9  3.7  3.8  5.6  5.5  5.9  6.2
5.7  3.9  4.0  4.0  7.0  3.7  9.5  4.2  6.4  3.5
4.5  4.5  4.6  5.4  5.6  6.6  5.8  4.5  6.2  7.5
頻數(shù)分布表 
分組 劃記 頻數(shù)
 2.0<x≤3.5 正正 11
 3.5<x≤5.0 19
 5.0<x≤6.5

 6.5<x≤8.0 
   
 8.0<x≤9.5
合計(jì)
2
50
(1)把上面頻數(shù)分布表和頻數(shù)分布直方圖補(bǔ)充完整;
(2)從直方圖中你能得到什么信息?(寫出兩條即可);
(3)為了鼓勵(lì)節(jié)約用水,要確定一個(gè)用水量的標(biāo)準(zhǔn),超出這個(gè)標(biāo)準(zhǔn)的部分按1.5倍價(jià)格收費(fèi),若要使60%的家庭收費(fèi)不受影響,你覺(jué)得家庭月均用水量應(yīng)該定為多少?為什么?
分析:(1)根據(jù)題中給出的50個(gè)數(shù)據(jù),從中分別找出5.0<x≤6.5與 6.5<x≤8.0 的個(gè)數(shù),進(jìn)行劃記,得到對(duì)應(yīng)的頻數(shù),進(jìn)而完成頻數(shù)分布表和頻數(shù)分布直方圖;
(2)本題答案不唯一.例如:從直方圖可以看出:①居民月平均用水量大部分在2.0至6.5之間;②居民月平均用水量在3.5<x≤5.0范圍內(nèi)的最多,有19戶;
(3)由于50×60%=30,所以為了鼓勵(lì)節(jié)約用水,要使60%的家庭收費(fèi)不受影響,即要使30戶的家庭收費(fèi)不受影響,而11+19=30,故家庭月均用水量應(yīng)該定為5噸.
解答:解:(1)頻數(shù)分布表如下:
分組 劃記 頻數(shù)
 2.0<x≤3.5 正正 11
 3.5<x≤5.0 19
 5.0<x≤6.5

 6.5<x≤8.0 
 
13
 8.0<x≤9.5
合計(jì)
2
50
頻數(shù)分布直方圖如下:


(2)從直方圖可以看出:①居民月平均用水量大部分在2.0至6.5之間;②居民月平均用水量在3.5<x≤5.0范圍內(nèi)的最多,有19戶;

(3)要使60%的家庭收費(fèi)不受影響,你覺(jué)得家庭月均用水量應(yīng)該定為5噸,因?yàn)樵缕骄盟坎怀^(guò)5噸的有30戶,30÷50=60%.
點(diǎn)評(píng):本題考查讀頻數(shù)分布直方圖和頻數(shù)分布表的能力及利用統(tǒng)計(jì)圖表獲取信息的能力;利用統(tǒng)計(jì)圖獲取信息時(shí),必須認(rèn)真觀察、分析、研究統(tǒng)計(jì)圖,才能作出正確的判斷和解決問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•德州)設(shè)A是由2×4個(gè)整數(shù)組成的2行4列的數(shù)表,如果某一行(或某一列)各數(shù)之和為負(fù)數(shù),則改變?cè)撔校ɑ蛟摿校┲兴袛?shù)的符號(hào),稱為一次“操作”.
(1)數(shù)表A如表1所示,如果經(jīng)過(guò)兩次“操作”,使得到的數(shù)表每行的各數(shù)之和與每列的各數(shù)之和均為非負(fù)整數(shù),請(qǐng)寫出每次“操作”后所得的數(shù)表;(寫出一種方法即可)
表1
1 2 3 -7
-2 -1 0 1
(2)數(shù)表A如表2所示,若經(jīng)過(guò)任意一次“操作”以后,便可使得到的數(shù)表每行的各數(shù)之和與每列的各數(shù)之和均為非負(fù)整數(shù),求整數(shù)a的值
表2.
a a2-1 -a -a2
2-a 1-a2 a-2 a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•德州一模)在市政府實(shí)施市容市貌工程期間,某中學(xué)在教學(xué)樓前鋪設(shè)小廣場(chǎng)地面.其圖案設(shè)計(jì)如圖1,正方形小廣場(chǎng)地面的邊長(zhǎng)是40m,中心建一直徑為20m的圓形花壇,四角各留一個(gè)邊長(zhǎng)為10m的小正方形花壇,種植高大樹(shù)木.圖中其余部分鋪設(shè)廣場(chǎng)磚.
(1)請(qǐng)同學(xué)們幫助計(jì)算鋪設(shè)廣場(chǎng)磚部分的面積S(π取3);
(2)某施工隊(duì)承包鋪設(shè)廣場(chǎng)磚的任務(wù),計(jì)劃在一定時(shí)間內(nèi)完成,按計(jì)劃工作一天后,由于改進(jìn)了鋪設(shè)工藝,每天比原計(jì)劃多鋪60m2,結(jié)果提前3天完成了任務(wù),原計(jì)劃每天鋪設(shè)多少m2?
(3)如圖2表示廣場(chǎng)中心圓形花壇的平面圖,準(zhǔn)備在圓形花壇內(nèi)種植6種不同顏色的花卉,為了美觀,要使同色花卉集中在一起,并且各花卉的種植面積相等.請(qǐng)你幫助設(shè)計(jì)一種方案,畫在圖2上.(不必說(shuō)明方案,不寫作法,保留作圖痕跡)

查看答案和解析>>

同步練習(xí)冊(cè)答案