【題目】已知二次函數(shù)yx 2mx(m為常數(shù)),當(dāng)-1≤x≤2時,函數(shù)y的最小值為-2,則m的值是(  )

A. B. C. D.

【答案】D

【解析】先將二次函數(shù)配方得: ,根據(jù)二次函數(shù)圖象和性質(zhì)可知:

對稱軸,由于對稱軸位置不確定,所以分m<-1, m2,1≤m≤2三種情況,根據(jù)二次函數(shù)y的最小值為-2,結(jié)合二次函數(shù)圖象和性質(zhì)進(jìn)行解答, ①若m<-1,當(dāng)x=-1時,y最小值=12m=-2,解得m=-,②若m2,當(dāng)x2時,y最小值=44m=-2,解得m2(),

③若-1≤m≤2,當(dāng)xm時,y最小值=-=-2,解得mm=-<-1(),綜上所述,m的值為-,因此正確選項(xiàng)是D.

yx 2mx(xm) m2.分以下3種情況:①若m<-1,當(dāng)x=-1時,y最小值=12m=-2,解得m=-;②若m2,當(dāng)x2時,y最小值=44m=-2,解得m2()③若-1≤m≤2,當(dāng)xm時,y最小值=-m2=-2,解得mm=-<-1().綜上所述,m的值為-,故選D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知線段AB、ab

1)請用尺規(guī)按下列要求作圖:(不要求寫作法,但要保留作圖痕跡)

延長線段ABC,使BCa;

反向延長線段ABD,使ADb

2)在(1)的條件下,如果AB8cma6m,b10cm,且點(diǎn)ECD的中點(diǎn),求線段AE的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的材料:小錘遇到一個問題:如圖①,在△ABC中,DE//BC分別交AB于點(diǎn)D,交AC于點(diǎn)E,已知CDBE,CD=2,BE=3,求BC+DE的值.

小錘發(fā)現(xiàn),過點(diǎn)E作EFDC,交BC的延長線于點(diǎn)F,構(gòu)造△BEF,經(jīng)過推理和計(jì)算能夠使問題得到解決.

(1)請按照上述思路完成小錘遇到的問題;

(2)參考小錘思考問題的方法,解決下面的問題:如圖②,四邊形ABCD是平行四邊形,四邊形ABEF是矩形,AC與DF交于點(diǎn)G,AC=BF=DF,求∠DGC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知|,,且,求的值.

解:(1)因?yàn)?/span>,所以______;

因?yàn)?/span>,所以______;

又因?yàn)?/span>,

所以當(dāng)______時,______;

或當(dāng)______時,______,

_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,,.將矩形ABCD沿過點(diǎn)C的直線折疊,使點(diǎn)B落在對角線AC上的點(diǎn)E處,折痕交AB于點(diǎn)F

1)求線段AC的長.

2)求線段EF的長.

3)點(diǎn)G在線段CF上,在邊CD上存在點(diǎn)H,使以E、F、G、H為頂點(diǎn)的四邊形是平行四邊形,請畫出,并直接寫出線段DH的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表所示是2019年元月的月歷表.下列結(jié)論:

①每一豎列上相鄰的兩個數(shù),下面的數(shù)比上面的數(shù)大7

②可以框出一豎列上相鄰的三個數(shù)(如圖所示),這三個數(shù)的和是24

③不可以框出一個2×2的矩形塊的四個數(shù)(如圖所示),這四個數(shù)的和是82;

④任意框出一個3×3的矩形塊的九個數(shù)(如圖所示),這九個數(shù)的和是中間數(shù)的9倍,其中正確的是_____(把所有正確的序號都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】□ABCD中,EBC的中點(diǎn),過點(diǎn)EEFAB于點(diǎn)F,延長DC,交FE的延長線于點(diǎn)G,連結(jié)DF,已知∠FDG=45°

(1)求證:GD=GF.

(2)已知BC=10, .求 CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五四青年節(jié)期間,校團(tuán)委對團(tuán)員參加活動情況進(jìn)行表彰,計(jì)劃分為優(yōu)秀獎和貢獻(xiàn)獎,為此聯(lián)系印刷公司設(shè)計(jì)了兩種獎狀,A,B兩家公司都為學(xué)校提出了相同規(guī)格和單價的兩種獎狀,其中優(yōu)秀獎的獎狀6/張,貢獻(xiàn)獎的獎狀5/張,經(jīng)過協(xié)商,A公司的優(yōu)惠條件是:兩種獎狀都打八折,但要收制版費(fèi)50元;B公司的優(yōu)惠條件是:兩種獎狀都打九折;根據(jù)學(xué)校要求,優(yōu)秀獎的個數(shù)是貢獻(xiàn)獎的2倍還多10個,如果設(shè)貢獻(xiàn)獎的個數(shù)是x

(1)分別寫出校團(tuán)委購買A,B兩家印刷廠所需要的總費(fèi)用y1(元)和y2(元)與貢獻(xiàn)獎個數(shù)x之間的函數(shù)關(guān)系式;

(2)校團(tuán)委選擇哪家印刷公司比較合算?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】碼頭工人每天往一艘輪船上裝載貨物,裝載速度y(噸/天)與裝完貨物所需時間x(天)之間的函數(shù)關(guān)系如圖.

1)求yx之間的函數(shù)表達(dá)式;

2)由于遇到緊急情況,要求船上的貨物不超過5天卸貨完畢,那么平均每天至少要卸多少噸貨物?

(3)若原有碼頭工人10名,裝載完畢恰好用了8天時間,在(2)的條件下,至少需要增加多少名工人才能完成任務(wù)?

查看答案和解析>>

同步練習(xí)冊答案