【題目】如圖,矩形中,,平分,于點(diǎn),,垂足為點(diǎn),,垂足為點(diǎn).則以下結(jié)論:①;②;③;④,⑤,其中正確的結(jié)論有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

【答案】D

【解析】

過點(diǎn)FFHAC,由角平分線的性質(zhì)得到HF=DF,延長(zhǎng)CEAD的延長(zhǎng)線交于點(diǎn)M,

AF平分∠CAD,AFCE,由“三線合一”逆定理,得到AC=AMCE=EM.再設(shè)HF=DF=x,由等積法得到,從而求出關(guān)鍵的DF的值.利用勾股定理得到AC=AH=, DM=,所以CE=,而后找到圖中常見的相識(shí)三角形并利用其性質(zhì)逐一推理計(jì)算判斷即可.

解:∵∠CEF=CEA=90°,∠CAE=EAD=FCE,

;

對(duì);

成立,則易知∠BAC=∠EAC=∠FAD=30°,則在BC=AB,而BC=2,AB=4BC=AB,故假設(shè)不成立. ②不對(duì);

過點(diǎn)FFHAC,∵AF平分∠CAD,ADDF,∴HF=DF=x,則CF=4-x,

又∵ ,

解得

, ,故④對(duì);

又∵

延長(zhǎng)CEAD的延長(zhǎng)線交于點(diǎn)M,

AF平分∠CAD,AFCE,

AC=AM=,CE=EM=,

DM=,又∵

,故③對(duì);

∵∠CGE=∠ADF=90°,∠ECG=∠DAF,

,

,

,

CG=DG=2,

又∵∠FEC=90°,GECF

,

,

,又∵CG=DG,

∴⑤對(duì);

綜上有4個(gè)正確,

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是長(zhǎng)方體模型,棱長(zhǎng)如圖所示,圖2是它的一種表面展開圖.

1在圖2中,表示出C可能的位置;

在圖3中畫出長(zhǎng)方體的一種展開圖(不同于圖2);

2)圖1中,一只在頂點(diǎn)A的螞蟻,要吃到C處的甜食,求它沿長(zhǎng)方體表面爬行的最短距離;

3 在滿足AB+BC+BB=9的條件下,當(dāng)AB為何值時(shí),螞蟻從A沿長(zhǎng)方體表面爬行到C距離最短,并寫出其中的一種方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小婷在放學(xué)路上,看到隧道上方有一塊宣傳中國﹣南亞博覽會(huì)的豎直標(biāo)語牌CD.她在A點(diǎn)測(cè)得標(biāo)語牌頂端D處的仰角為42°,測(cè)得隧道底端B處的俯角為30°(B,C,D在同一條直線上),AB=10m,隧道高6.5m(即BC=65m),求標(biāo)語牌CD的長(zhǎng)(結(jié)果保留小數(shù)點(diǎn)后一位).(參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(7分)某中學(xué)1000名學(xué)生參加了環(huán)保知識(shí)競(jìng)賽,為了了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分取整數(shù),滿分為100分)作為樣本進(jìn)行統(tǒng)計(jì),并制作了如圖頻數(shù)分布表和頻數(shù)分布直方圖(不完整且局部污損,其中“■”表示被污損的數(shù)據(jù)).請(qǐng)解答下列問題:

成績(jī)分組

頻數(shù)

頻率

50≤x<60

8

0.16

60≤x<70

12

a

70≤x<80

0.5

80≤x<90

3

0.06

90≤x≤100

b

c

合計(jì)

1

(1)寫出a,b,c的值;

(2)請(qǐng)估計(jì)這1000名學(xué)生中有多少人的競(jìng)賽成績(jī)不低于70分;

(3)在選取的樣本中,從競(jìng)賽成績(jī)是80分以上(含80分)的同學(xué)中隨機(jī)抽取兩名同學(xué)參加環(huán)保知識(shí)宣傳活動(dòng),求所抽取的2名同學(xué)來自同一組的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,D、E分別是AB、AC的中點(diǎn),BE=2DE,延長(zhǎng)DE到點(diǎn)F,使得EF=BE,連接CF

1)求證:四邊形BCFE是菱形;

2)若CE=4,BCF=120°,求菱形BCFE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】初三第一輪復(fù)習(xí)重在查漏補(bǔ)缺,課后很重要的一項(xiàng)任務(wù)是糾錯(cuò).在深大附中九年級(jí)隨機(jī)抽取部分學(xué)生進(jìn)行調(diào)查,對(duì)平時(shí)的錯(cuò)題:表示每一道錯(cuò)題都解決了,表示大部分錯(cuò)題解決了表示只有一部分錯(cuò)題解決了,表示從不解決錯(cuò)題.對(duì)抽取的學(xué)生問卷統(tǒng)計(jì)后如圖:

1)抽查的學(xué)生有______人;扇形統(tǒng)計(jì)圖中,占比_______占比_______

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)全年級(jí)有480人,估計(jì)對(duì)錯(cuò)題全解決大部分解決共有多少學(xué)生?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,∠A=60°AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),直線軸于點(diǎn),交軸于點(diǎn),點(diǎn)上,,軸于點(diǎn)

1)求點(diǎn)的坐標(biāo);

2)點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度沿勻速運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度沿勻速運(yùn)動(dòng),設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為,的面積為,求之間的函數(shù)關(guān)系式;

3)在(2)的條件下,過點(diǎn)軸于點(diǎn),連接,點(diǎn)中點(diǎn),連接,求為何值時(shí),直線軸相交所成的銳角與互余.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線(m,n 為常數(shù))

1)若拋物線的的對(duì)稱軸為直線 x=1,且經(jīng)過點(diǎn)(0,-1),求 m,n 的值;

2)若拋物線上始終存在不重合的兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,求 n 的取值范圍;

3)在(1)的條件下,存在正實(shí)數(shù) a,b( ab),當(dāng) axb 時(shí),恰好有,請(qǐng)直接寫出 ab 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案