精英家教網 > 初中數學 > 題目詳情
已知:如圖,AB是⊙O的直徑,OD⊥BC于D,AC=8cm,求OD的長.
分析:由AB是⊙O的直徑,根據圓周角定理,即可得∠C=90°,又由OD⊥BC,可得OD∥AC,由OA=OB,即可得OD是△ABC的中位線,根據三角形中位線的性質,即可求得OD的長.
解答:解:∵AB是⊙O的直徑,
∴∠C=90°,
∵OD⊥BC,
∴∠BDO=∠C=90°,
∴OD∥AC,
∵OA=OB,
∴CD=BD,
即OD是△ABC的中位線,
∴OD=
1
2
AC=
1
2
×8=4(cm).
點評:此題考查了圓周角定理、三角形中位線的性質、以及平行線的判定與性質.此題難度不大,解題的關鍵是注意數形結合思想的應用.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

22、已知:如圖,AB是⊙O的直徑,BC是和⊙O相切于點B的切線,⊙O的弦AD平行于OC.
求證:DC是⊙O的切線.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•門頭溝區(qū)一模)已知:如圖,AB是⊙O的直徑,AC是⊙O的弦,M為AB上一點,過點M作DM⊥AB,交弦AC于點E,交⊙O于點F,且DC=DE.
(1)求證:DC是⊙O的切線;
(2)如果DM=15,CE=10,cos∠AEM=
513
,求⊙O半徑的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

(1997•昆明)已知:如圖,AB是⊙O的直徑,直線MN切⊙O于點C,AD⊥MN于D,AD交⊙O于E,AB的延長線交MN于點P.求證:AC2=AE•AP.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•平谷區(qū)二模)已知,如圖,AB是⊙O的直徑,點E是
AD
的中點,連接BE交AC于點G,BG的垂直平分線CF交BG于H交AB于F點.
(1)求證:BC是⊙O的切線;
(2)若AB=8,BC=6,求BE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,AB是⊙O的直徑,BC為⊙O的切線,過點B的弦BD⊥OC交⊙O于點D,垂足為E.
(1)求證:CD是⊙O的切線;
(2)當BC=BD,且BD=12cm時,求圖中陰影部分的面積(結果不取近似值).

查看答案和解析>>

同步練習冊答案