【題目】二次函數(shù)y=x2的圖象如圖,點A0位于坐標(biāo)原點,點A1,A2,A3…An在y軸的正半軸上,點B1,B2,B3…Bn在二次函數(shù)位于第一象限的圖象上,點C1,C2,C3…n在二次函數(shù)位于第二象限的圖象上,四邊形A0B1A1C1,四邊形A1B2A2C2,四邊形A2B3A3C3…四邊形An﹣1BnAnn都是正方形,則正方形An﹣1BnAnn的周長為_____.
【答案】4n
【解析】
根據(jù)四邊形A0B1A1C1是正方形,可得知△A0B1A1是等腰直角三角形,結(jié)合拋物線的解析式求出△A0B1A1的直角邊長,同理求出直角△A1B2A2的直角邊長……,找到直角三角形△An﹣1BnAn的直角邊長的規(guī)律即可求出周長.
解:∵四邊形A0B1A1C1是正方形,∠A0B1A1=90°,
∴△A0B1A1是等腰直角三角形.
設(shè)△A0B1A1的直角邊長為m1,則B1(m,m);
代入拋物線的解析式中得:(m)2=m,
解得m1=0(舍去),m1=;
故△A0B1A1的直角邊長為,
同理可求得等腰直角△A1B2A2的直角邊長為2,
…
依此類推,等腰直角△An﹣1BnAn的直角邊長為n,
故正方形An﹣1BnAnn的周長為4n.
故答案是:4n.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓的直徑,點C是弧AB的中點,點E是弧AC的中點,連結(jié)EB、CA交于點F,則 的值為( )
A.B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實踐:如圖△ABC是直角三角形,∠ACB=90°,利用直尺和圓規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)的字母.(保留作圖痕跡,不寫作法)
(1)作∠BAC的平分線,交BC于點O.
(2)以O為圓心,OC為半徑作圓.
綜合運用:在你所作的圖中,
(1)AB與⊙O的位置關(guān)系是_____ .(直接寫出答案)
(2)若AC=5,BC=12,求⊙O 的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某校為了讓學(xué)生的課余生活豐富多彩,開展了以下課外活動:
代號 | 活動類型 |
A | 經(jīng)典誦讀與寫作 |
B | 數(shù)學(xué)興趣與培優(yōu) |
C | 英語閱讀與寫作 |
D | 藝體類 |
E | 其他 |
為了解學(xué)生的選擇情況,現(xiàn)從該校隨機(jī)抽取了部分學(xué)生進(jìn)行問卷調(diào)查(參與問卷調(diào)查的每名學(xué)生只能選擇其中一項),并根據(jù)調(diào)查得到的數(shù)據(jù)繪制了如圖所示的兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖提供的信息回答下列問題(要求寫出簡要的解答過程).
(1)此次共調(diào)查了 名學(xué)生.
(2)將條形統(tǒng)計圖補充完整.
(3)“數(shù)學(xué)興趣與培優(yōu)”所在扇形的圓心角的度數(shù)為 .
(4)若該校共有2000名學(xué)生,請估計該校喜歡A、B、C三類活動的學(xué)生共有多少人?
(5)學(xué)校將從喜歡“A”類活動的學(xué)生中選取4位同學(xué)(其中女生2名,男生2名)參加校園“金話筒”朗誦初賽,并最終確定兩名同學(xué)參加決賽,請用列表或畫樹狀圖的方法,求出剛好一男一女參加決賽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,路燈下,廣告標(biāo)桿AB的影子是BC,小明(用線段DE表示)的影子是EF,在M處有一棵樹,它的影子是MN.
(1)請在圖中畫出表示樹高的線段.(不寫作法,保留作圖痕跡)
(2)若已知點N、F到路燈的底部距離相等,小明身高1.6米,影長EF為1.8米,樹的影長MN是6米,請計算樹的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,點P在AD上,AB=2,AP=1.直角尺的直角頂點放在點P處,直角尺的兩邊分別交AB、BC于點E、F,連接EF(如圖1).
(1)當(dāng)點E與點B重合時,點F恰好與點C重合(如圖2).
①求證:△APB∽△DCP;
②求PC、BC的長.
(2)探究:將直角尺從圖2中的位置開始,繞點P順時針旋轉(zhuǎn),當(dāng)點E和點A重合時停止.在這個過程中(圖1是該過程的某個時刻),觀察、猜想并解答:
① tan∠PEF的值是否發(fā)生變化?請說明理由.
② 設(shè)AE=x,當(dāng)△PBF是等腰三角形時,請直接寫出x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在和中,,點為射線,的交點.
(1)問題提出:如圖1,若,.
①與的數(shù)量關(guān)系為________;
②的度數(shù)為________.
(2)猜想論證:如圖2,若,則(1)中的結(jié)論是否成立?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形的項點都在坐標(biāo)軸上,若與面積分別為和,若雙曲線恰好經(jīng)過的中點,則的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】附加題,已知:矩形,,動點從點開始向點運動,動點速度為每秒1個單位,以為對稱軸,把折疊,所得與矩形重疊部分面積為,運動時間為秒.
(1)當(dāng)運動到第幾秒時點恰好落在上;
(2)求關(guān)于的關(guān)系式,以及的取值范圍;
(3)在第幾秒時重疊部分面積是矩形面積的;
(4)連接,以為對稱軸,將作軸對稱變換,得到,當(dāng)為何值時,點在同一直線上?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com