【題目】如圖,在平面直角坐標(biāo)系中,各頂點(diǎn)的坐標(biāo)分別為

1)作出關(guān)于原點(diǎn)成中心對稱的

2)作出點(diǎn)關(guān)于軸的對稱點(diǎn)若把點(diǎn)向右平移個(gè)單位長度后,落在的內(nèi)部(不包括頂點(diǎn)和邊界),的取值范圍,

【答案】1)見解析;(2)見解析,

【解析】

1)利用關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)特征寫出A1B1、C1的坐標(biāo),然后描點(diǎn)即可;
2)根據(jù)關(guān)于x軸對稱的點(diǎn)的坐標(biāo)特征寫出C′坐標(biāo),則把點(diǎn)C'向右平移4個(gè)單位到C1位置,把點(diǎn)C'向右平移6個(gè)單位落在A1B1上,從而得到a的范圍.

解:(1)如圖,△A1B1C1為所作;

2C′的坐標(biāo)為(-2,-3),把點(diǎn)C'向右平移a個(gè)單位長度后落后在△A1B1C1的內(nèi)部(不包括頂點(diǎn)和邊界),則a的取值范圍為:4a6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲班56人,其中身高在160厘米以上的男同學(xué)10人,身高在160厘米以上的女同學(xué)3人,乙班80人,其中身高在160厘米以上的男同學(xué)20人,身高在160厘米以上的女同學(xué)8人.如果想在兩個(gè)班的160厘米以上的女生中抽出一個(gè)作為旗手,在哪個(gè)班成功的機(jī)會(huì)大?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的直角坐標(biāo)系中,每個(gè)小方格都是邊長為1的正方形,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)A的坐標(biāo)是(﹣3,﹣1).

(1)以O為中心作出△ABC的中心對稱圖形△A1B1C1,并寫出點(diǎn)B1坐標(biāo);

(2)以格點(diǎn)P為旋轉(zhuǎn)中心,將△ABC按順時(shí)針方向旋轉(zhuǎn)90°,得到△A′B′C′,且使點(diǎn)A的對應(yīng)點(diǎn)A′的恰好落在△A1B1C1的內(nèi)部格點(diǎn)上(不含△A1B1C1的邊上),寫出點(diǎn)P的坐標(biāo),并畫出旋轉(zhuǎn)后的△A′B′C′.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校要開展校園文化藝術(shù)節(jié)活動(dòng),為了合理編排節(jié)目,對學(xué)生最喜愛的歌曲、舞蹈、小品、相聲四類節(jié)目進(jìn)行了一次隨機(jī)抽樣調(diào)查(每名學(xué)生必須選擇且只能選擇一類),并將調(diào)查結(jié)果繪制成如下不完整統(tǒng)計(jì)圖.

請你根據(jù)圖中信息,回答下列問題:

(1)本次共調(diào)查了  名學(xué)生.

(2)在扇形統(tǒng)計(jì)圖中,歌曲所在扇形的圓心角等于  度.

(3)補(bǔ)全條形統(tǒng)計(jì)圖(標(biāo)注頻數(shù)).

(4)根據(jù)以上統(tǒng)計(jì)分析,估計(jì)該校2000名學(xué)生中最喜愛小品的人數(shù)為  人.

(5)九年一班和九年二班各有2名學(xué)生擅長舞蹈,學(xué)校準(zhǔn)備從這4名學(xué)生中隨機(jī)抽取2名學(xué)生參加舞蹈節(jié)目的編排,那么抽取的2名學(xué)生恰好來自同一個(gè)班級的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù) yax2+x+c 的圖象與 y 軸交于點(diǎn) A(0,4),

x 軸交于點(diǎn) B、C,點(diǎn) C 坐標(biāo)為(8,0),連接 AB、AC

(1)請直接寫出二次函數(shù) yax2+x+c 的表達(dá)式;

(2)判斷ABC 的形狀,并說明理由;

(3)若點(diǎn) N x 軸上運(yùn)動(dòng),當(dāng)以點(diǎn) AN、C 為頂點(diǎn)的三角形是等腰三角形時(shí), 請直接寫出此時(shí)點(diǎn) N 的坐標(biāo);

(4)若點(diǎn) N 在線段 BC 上運(yùn)動(dòng)不與點(diǎn) BC 重合,過點(diǎn) N NMAC,交AB 于點(diǎn) M,當(dāng)AMN 面積最大時(shí),求此時(shí)點(diǎn) N 的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在RtABC中,ACB=90°,BE平分ABC,D是邊AB上一點(diǎn),以BD為直徑的O經(jīng)過點(diǎn)E,且交BC于點(diǎn)F.

(1)求證:AC是O的切線;

(2)若BF=6,O的半徑為5,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面關(guān)于x的方程中:①ax2+x+2=0;②3(x-9)2-(x+1)2=1;③x+3=④x2-a=0(a為任意實(shí)數(shù);⑤=x-1一元二次方程的個(gè)數(shù)是  

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+2m1x+m24=0有兩個(gè)不相等的實(shí)數(shù)根.

1)求m的取值范圍;

2)若m為正整數(shù),且該方程的兩個(gè)根都是整數(shù),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系xOy中,點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn),點(diǎn)A的坐標(biāo)為(0,-3).

(1)如圖①所示,直線l過點(diǎn)Q(0,-1)且平行于x軸,過P點(diǎn)作PB⊥l,垂足為B,連接PA,猜想PA與PB的大小關(guān)系,并證明你的猜想.

(2)請利用(1)的結(jié)論解決下列問題:

①如圖②所示,設(shè)點(diǎn)C的坐標(biāo)為(2,-5),連接PC,問PA+PC是否存在最小值?如果存在,請并求出點(diǎn)P的坐標(biāo);如果不存在,請說明理由.

②若過動(dòng)點(diǎn)P和點(diǎn)Q(0,-1)的直線交拋物線于另一點(diǎn)D,且PA=4AD,求直線PQ的表達(dá)式(圖③為備用圖).

查看答案和解析>>

同步練習(xí)冊答案