如圖,菱形ABCD的邊長是13,點O是兩條對角線的交點,且OB=12.約定:三角形三邊上的任意一點到圓上的任意一點距離的最小值叫做三角形與圓的距離.依據(jù)這個約定,可知當⊙C的半徑是    時,△ABD與⊙C的距離為3.
【答案】分析:先根據(jù)菱形的性質(zhì)得出BD是AC的垂直平分線,由勾股定理可求出OA的長,根據(jù)題中所給的條件畫出圖形,求出⊙C的半徑即可.
解答:解:∵四邊形ABCD是菱形,
∴BD是AC的垂直平分線,
∵菱形ABCD的邊長是13,且OB=12,
∴OA===5,
∴OC=OA=5,
∴當如圖1所示時,
∵△ABD中點O到⊙C的距離最小,
∴△ABD與⊙C的距離為3,
∵OC=5,
∴⊙C的半徑=5-3=2;
如圖2所示:
當菱形ABCD在⊙C內(nèi)時,
∵點B或點D到⊙C的距離最短,CD=13,
∴⊙C的半徑=13+3=16.
故答案為:2或16.

點評:本題考查的是點與圓的位置關(guān)系,熟知“點的位置可以確定該點到圓心距離與半徑的關(guān)系,反過來已知點到圓心距離與半徑的關(guān)系可以確定該點與圓的位置關(guān)系”是解答此題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,菱形ABCD的邊長為2,∠ABC=45°,則點D的坐標為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,菱形ABCD的對角線AC=6,BD=8,∠ABD=α,則下列結(jié)論正確的是(  )
A、sinα=
4
5
B、cosα=
3
5
C、tanα=
4
3
D、tanα=
3
4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,菱形ABCD的邊長為6且∠DAB=60°,以點A為原點、邊AB所在的直線為x軸且頂點D在第一象限建立平面直角坐標系.動點P從點D出發(fā)沿折線DCB向終點B以2單位/每秒的速度運動,同時動點Q從點A出發(fā)沿x軸負半軸以1單位/秒的速度運動,當點P到達終點時停止運動,運動時間為t,直線PQ交邊AD于點E.
(1)求出經(jīng)過A、D、C三點的拋物線解析式;
(2)是否存在時刻t使得PQ⊥DB,若存在請求出t值,若不存在,請說明理由;
(3)設AE長為y,試求y與t之間的函數(shù)關(guān)系式;
(4)若F、G為DC邊上兩點,且點DF=FG=1,試在對角線DB上找一點M、拋物線ADC對稱軸上找一點N,使得四邊形FMNG周長最小并求出周長最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,菱形ABCD的邊長為8cm,∠B=60°,P、Q同時從A點出發(fā),點P以1cm/秒的速度沿A→C→B的方向運動,點Q以2cm/秒的速度沿A→B→C→D的方向運動.當點Q運動到D點時,P、Q兩點同時停止運動.設P、Q運動的時間為x秒,△APQ與△ABC重疊部分的面積為ycm2(規(guī)定:點和線段是面積為0的三角形).
(1)當x=
8
8
秒時,P和Q相遇;
(2)當x=
(12-4
3
(12-4
3
秒時,△APQ是等腰直角三角形;
(3)當x=
32
3
32
3
秒時,△APQ是等邊三角形;
(4)求y關(guān)于x的函數(shù)關(guān)系式,并求y的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,菱形ABCD的周長為8cm,∠ABC:∠BAD=2:1,對角線AC、BD相交于點O,求BD及AC的長.

查看答案和解析>>

同步練習冊答案