【題目】如圖,已知平行四邊形ABCD,點M,N分別在邊AD和邊BC上,點E,F(xiàn)在線段BD上,且AM=CN,DF=BE.求證:
(1)∠DFM=∠BEN;
(2)四邊形MENF是平行四邊形.
【答案】詳見解析.
【解析】
試題分析:(1)由平行四邊形的性質(zhì)得到得AD∥BC,AD=BC,∠ADF=∠CBE,然后根據(jù)AM=CN得到DM=BN,從而證得△DMF≌△BNE,理由全等三角形對應角相等證得結(jié)論;(2)利用一組對邊平行且相等的四邊形為平行四邊形進行判定即可.
試題解析:(1)由平行四邊形ABCD得AD∥BC,AD=BC,∠ADF=∠CBE
∵AM=CN,
∴AD﹣AM=BC﹣CN,
即DM=BN,
又∵DF=BE,
∴△DMF≌△BNE,
∴∠DFM=∠BEN;
(2)由△DMF≌△BNE得NE=MF,
∵∠DFM=∠BEN得∠FEN=∠MFE,
∴MF∥NE,
∴四邊形NEMF是平行四邊形;
科目:初中數(shù)學 來源: 題型:
【題目】在□ABCD中,AC、BD交于點O,過點O作直線EF、GH,分別交平行四邊形的四條邊于E、G、F、H四點,連接EG、GF、FH、HE.
(1)如圖①,試判斷四邊形EGFH的形狀,并說明理由;
(2)如圖②,當EF⊥GH時,四邊形EGFH的形狀是 ;
(3)如圖③,在(2)的條件下,若AC=BD,四邊形EGFH的形狀是 ;
(4)如圖④,在(3)的條件下,若AC⊥BD,試判斷四邊形EGFH的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在扇形OAB中,∠AOB=90°,半徑OA=6.將扇形OAB沿過點B的直線折疊,點O恰好落在弧AB上點D處,折痕交OA于點C,則有下列選項:
①∠ACD=60°;
②CB=6;
③陰影部分的周長為12+3π;
④陰影部分的面積為9π﹣12.
其中正確的是 (填寫編號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知等腰直角△ABC,∠A=90°.
(1)利用尺規(guī)作∠ABC的平分線BD,交AC于點D(保留作圖痕跡,不寫作法);
(2)若將(1)中的△ABD沿BD折疊,則點A正好落在BC邊上的A1處,當AB=1時,求△A1DC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年“五一”節(jié),小明外出爬山,他從山腳爬到山頂?shù)倪^程中,中途休息了一段時間,設他從山腳出發(fā)后所用的時間為t(min),所走的路程為s(m),s與t之間的函數(shù)關系如圖所示,請回答下列問題:
(1)小明中途休息用了幾分鐘?
(2)小明休息前爬山的平均速度為多少米每分鐘?
(3)小明在上述過程中所走的路程為多少米?
(4)小明休息后爬山的平均速度為多少米每分鐘?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,以AB為直徑的⊙O交AC邊于點D,點E在BC上,連結(jié)BD,DE,∠CDE=∠ABD.
(1)證明:DE是⊙O的切線;
(2)若BD=12,sin∠CDE=,求圓O的半徑和AC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com