【題目】如圖,Rt△ABC中,∠ACB=90°,AC=2,BC=4,CD是△ABC的中線,E是邊BC上一動(dòng)點(diǎn),將△BED沿ED折疊,點(diǎn)B落在點(diǎn)F處,EF交線段CD于點(diǎn)G,當(dāng)△DFG是直角三角形時(shí),則CE=__________.
【答案】1或
【解析】
根據(jù)題意分兩種情形進(jìn)行解答:①當(dāng)∠DGF=90°時(shí),作DH⊥BC于H.②當(dāng)∠GDF=90°,作DH⊥BC于H,DK⊥FG于K.
解:①如圖當(dāng)∠DGF=90°時(shí),作DH⊥BC于H.
在Rt△ACB中,∠ACB=90°,AC=2,BC=4,
∵ ,
∵AD=DB
∴CD=AB=,
∵DH∥AC,AD=DB,
∴CH=BH,
∴DH=DG=AC=1,
∴CG= -1,
∵DC=DB,
∴∠DCB=∠B,
∴cos∠DCB=cos∠B= ,
∴CE=CG÷cos∠DCB=
②如圖當(dāng)∠GDF=90°,作DH⊥BC于H,DK⊥FG于K.
可得四邊形DKEH是正方形,即EH=DH=1,
∵CH=BH=2,
∴.CE=1,
綜上,滿足條件的CE的值為1或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀以下材料,并按要求完成相應(yīng)地任務(wù):
萊昂哈德·歐拉(Leonhard Euler)是瑞士數(shù)學(xué)家,在數(shù)學(xué)上經(jīng)常見(jiàn)到以他的名字命名的重要常數(shù),公式和定理,下面是歐拉發(fā)現(xiàn)的一個(gè)定理:在△ABC中,R和r分別為外接圓和內(nèi)切圓的半徑,O和I分別為其外心和內(nèi)心,則.下面是該定理的證明過(guò)程(部分):
延長(zhǎng)AI交⊙O于點(diǎn)D,過(guò)點(diǎn)I作⊙O的直徑MN,連接DM,AN.
∵∠D=∠N,∴∠DMI=∠NAI(同弧所對(duì)的圓周角相等),
∴△MDI∽△ANI.∴,∴①
如圖2,在圖1(隱去MD,AN)的基礎(chǔ)上作⊙O的直徑DE,連接BE,BD,BI,IF
∵DE是⊙O的直徑,∴∠DBE=90°.
∵⊙I與AB相切于點(diǎn)F,∴∠AFI=90°,
∴∠DBE=∠IFA.
∵∠BAD=∠E(同弧所對(duì)圓周角相等),
∴△AIF∽△EDB.
∴,∴②
任務(wù):(1)觀察發(fā)現(xiàn):, (用含R,d的代數(shù)式表示);
(2)請(qǐng)判斷BD和ID的數(shù)量關(guān)系,并說(shuō)明理由.
(3)請(qǐng)觀察式子①和式子②,并利用任務(wù)(1),(2)的結(jié)論,按照上面的證明思路,完成該定理證明的剩余部分;
(4)應(yīng)用:若△ABC的外接圓的半徑為5cm,內(nèi)切圓的半徑為2cm,則△ABC的外心與內(nèi)心之間的距離為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解下列方程
(1)x2=9;
(2)x(x+2)﹣(x+2)=0;
(3)x2﹣6x﹣4=0;
(4)x2+x﹣6=0;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)圖象上部分點(diǎn)的坐標(biāo)(x,y)的對(duì)應(yīng)值如下表所示:
x | … | 0 | 4 | … | |
y | … | 0.37 | -1 | 0.37 | … |
則方程ax2+bx+1.37=0的根是( )
A.0或4B.或C.1或5D.無(wú)實(shí)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E是AD上的一個(gè)動(dòng)點(diǎn),連接BE,作點(diǎn)A關(guān)于BE的對(duì)稱點(diǎn)F,且點(diǎn)F落在矩形ABCD的內(nèi)部,連接AF,BF,EF,過(guò)點(diǎn)F作GF⊥AF交AD于點(diǎn)G,設(shè).
(1)求證:AE=GE;
(2)當(dāng)點(diǎn)F落在AC上時(shí),用含n的代數(shù)式表示的值;
(3)若AD=4AB,且以點(diǎn)F,C,G為頂點(diǎn)的三角形是直角三角形,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 問(wèn)題發(fā)現(xiàn):如圖(1)在Rt△ABC和Rt△BDE中,∠A=∠DEB=30°,BC=BE=6,Rt△BDE繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),H為CD的中點(diǎn),當(dāng)點(diǎn)C與點(diǎn)E重臺(tái)時(shí),BH與AE的位置關(guān)系為______,BH與AE的數(shù)量關(guān)系為______;
問(wèn)題證明:在Rt△BDE繞點(diǎn)B旋轉(zhuǎn)的過(guò)程中,(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)就圖(2)的情形給出證明若不成立,請(qǐng)說(shuō)明理由;
拓展應(yīng)用:在Rt△BDE繞點(diǎn)B旋轉(zhuǎn)的過(guò)程中,當(dāng)DE∥BC時(shí),請(qǐng)直接寫出BH2的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=﹣ax+b的圖象與反比例函數(shù)的圖象相交于點(diǎn)A(﹣4,﹣2),B(m,4),與y軸相交于點(diǎn)C.
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)求點(diǎn)C的坐標(biāo)及△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=x﹣2與雙曲線y=(k≠0)相交于A,B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)是3.
(1)求k的值;
(2)過(guò)點(diǎn)P(0,n)作直線,使直線與x軸平行,直線與直線y=x﹣2交于點(diǎn)M,與雙曲線y= (k≠0)交于點(diǎn)N,若點(diǎn)M在N右邊,求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了節(jié)省材料,某農(nóng)戶利用一段墻體為一邊(墻體的長(zhǎng)為10米),用總長(zhǎng)為40m的圍網(wǎng)圍成如圖所示的①②③三塊矩形區(qū)域,而且這三塊矩形區(qū)域的面積相等.
(1)求AE:EB的值;
(2)當(dāng)BE的長(zhǎng)為何值時(shí),長(zhǎng)方形ABCD的面積達(dá)到72m2?
(3)當(dāng)BE的長(zhǎng)為何值時(shí),矩形區(qū)域①的面積達(dá)到最大值?并求出其最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com