給出以下兩個(gè)定理:
①線(xiàn)段垂直平分線(xiàn)上的點(diǎn)到這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等;
②到一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上.
應(yīng)用上述定理進(jìn)行如下推理,如圖,直線(xiàn)l是線(xiàn)段MN的垂直平分線(xiàn).
∵點(diǎn)A在直線(xiàn)l上,
∴AM=AN
∵BM=BN,
∴點(diǎn)B在直線(xiàn)l上
∵CM≠CN,∴點(diǎn)C不在直線(xiàn)l上.
這是因?yàn)槿绻c(diǎn)C在直線(xiàn)l上,那么CM=CN
這與條件CM≠CN矛盾.
以上推理中各括號(hào)內(nèi)應(yīng)注明的理由依次是


  1. A.
    ②①①
  2. B.
    ②①②
  3. C.
    ①②②
  4. D.
    ①②①
D
分析:本題是一道閱讀理解題,考查對(duì)線(xiàn)段的垂直平分線(xiàn)的性質(zhì)與判定的區(qū)分,解答時(shí)一定要認(rèn)真閱讀文字,正確寫(xiě)出理由.
解答:根據(jù)題意,第一個(gè)空,由垂直平分線(xiàn)得到線(xiàn)段相等,應(yīng)用了性質(zhì),填①;
第二個(gè)空,由線(xiàn)段相等得點(diǎn)在直線(xiàn)上,應(yīng)用了判定,填②;
應(yīng)用了垂直平分線(xiàn)的性質(zhì),填①.
應(yīng)所以填①②①,
故選D.
點(diǎn)評(píng):本題考查了垂直平分線(xiàn)的性質(zhì)及判定;前提是在線(xiàn)段垂直平分線(xiàn)上,應(yīng)使用性質(zhì);最后得到線(xiàn)段垂直平分線(xiàn),應(yīng)使用判定,分清這點(diǎn)是正確解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

16、給出以下兩個(gè)定理:
①線(xiàn)段垂直平分線(xiàn)上的點(diǎn)到這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等;
②到一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上.
應(yīng)用上述定理進(jìn)行如下推理,如圖,直線(xiàn)l是線(xiàn)段MN的垂直平分線(xiàn).
∵點(diǎn)A在直線(xiàn)l上,
∴AM=AN( 。
∵BM=BN,
∴點(diǎn)B在直線(xiàn)l上(  )
∵CM≠CN,∴點(diǎn)C不在直線(xiàn)l上.
這是因?yàn)槿绻c(diǎn)C在直線(xiàn)l上,那么CM=CN( 。
這與條件CM≠CN矛盾.
以上推理中各括號(hào)內(nèi)應(yīng)注明的理由依次是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:中華題王 數(shù)學(xué) 九年級(jí)上 (北師大版) 北師大版 題型:013

給出以下兩個(gè)定理:

①線(xiàn)段垂直平分線(xiàn)上的點(diǎn)到這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等.

②到一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上.

應(yīng)用上述定理進(jìn)行如下推理.

如圖直線(xiàn)l是線(xiàn)段MN的垂直平分線(xiàn).

∵點(diǎn)A在直線(xiàn)l上,

∴AM=AN(  ).

∵BM=BN,

∴點(diǎn)B在直線(xiàn)l上(  ).

∵CM≠CN,

∴點(diǎn)C不在直線(xiàn)l上.

這是因?yàn)槿绻c(diǎn)C在直線(xiàn)l上,那么CM=CN這與條件CM≠CN矛盾.

以上推理中各括號(hào)內(nèi)應(yīng)注明的理由依次是

[  ]

A.②①①

B.②①②

C.①②②

D.①②①

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:013

給出以下兩個(gè)定理:

(1)線(xiàn)段垂直平分線(xiàn)上的點(diǎn)到這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等.

(2)到一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上.應(yīng)用上述定理進(jìn)行如下推理,如圖,已知直線(xiàn)l是線(xiàn)段MN的垂直平分線(xiàn).

∵點(diǎn)A在直線(xiàn)l上,∴AM=AN(  ).

∵BM=BN,∴點(diǎn)B在直線(xiàn)l上(  ).

∵CM≠CN,∴點(diǎn)C不在直線(xiàn)l上(  ).

以上推理中,各括號(hào)內(nèi)應(yīng)注明的理由依次是

[  ]

A.(2)(1)(1)
B.(2)(1)(2)
C.(1)(2)(2)
D.(1)(2)(1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:月考題 題型:單選題

給出以下兩個(gè)定理:①線(xiàn)段垂直平分線(xiàn)上的點(diǎn)到這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等;②到一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上,應(yīng)用上述定理進(jìn)行如下推理,如圖,直線(xiàn)l是線(xiàn)段MN的垂直平分線(xiàn),
因?yàn)辄c(diǎn)A在直線(xiàn)l上,
所以AM=AN( ),
因?yàn)锽M=BN,
所以點(diǎn)B在直線(xiàn)l上( ),
因?yàn)镃M≠CN,所以點(diǎn)C不在直線(xiàn)l上,這是因?yàn)槿绻c(diǎn)C在直線(xiàn)l上,那么CM=CN( ),
這與條件CM≠CN矛盾,
以上推理中各括號(hào)內(nèi)應(yīng)注明的理由依次是
[     ]
A.②①①
B.②①②
C.④②②
D.①②①

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:同步題 題型:單選題

給出以下兩個(gè)定理:
①線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等;
②和一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上。
應(yīng)用上述定理進(jìn)行如下推理,如圖,直線(xiàn)是線(xiàn)段MN的垂直平分線(xiàn)。
∵點(diǎn)A在直線(xiàn)上
∴AM=AN( )
∵BM=BN
∴點(diǎn)B在直線(xiàn)上( )
∵CM≠CN
∴點(diǎn)C不在直線(xiàn)上( )
如果點(diǎn)C在直線(xiàn)上,那么CM=CN( )
這與條件CM≠CN矛盾
以上推理中各括號(hào)內(nèi)應(yīng)注明的理由依次是
[     ]
A.②①①①
B.②①①②
C.①②①②
D.①②②①

查看答案和解析>>

同步練習(xí)冊(cè)答案