【題目】如圖,∠AOB的一邊OA為平面鏡,∠AOB=37°36′,在OB上有一點E,從E點射出一束光線經OA上一點D反射,反射光線DC恰好與OB平行,入射角∠ODE與反射角∠ADC相等,則∠DEB的度數是( )
A. 75°36′ B. 75°12′ C. 74°36′ D. 74°12′
科目:初中數學 來源: 題型:
【題目】如圖1,有A、B兩動點在線段MN上各自做不間斷往返勻速運動(即只要動點與線段MN的某一端點重合則立即轉身以同樣的速度向MN的另一端點運動,與端點重合之前動點運動方向、速度均不改變),已知A的速度為3米/秒,B的速度為2米/秒
(1)已知MN=100米,若B先從點M出發(fā),當MB=5米時A從點M出發(fā),A出發(fā)后經過 秒與B第一次重合;
(2)已知MN=100米,若A、B同時從點M出發(fā),經過 秒A與B第一次重合;
(3)如圖2,若A、B同時從點M出發(fā),A與B第一次重合于點E,第二次重合于點F,且EF=20米,設MN=s米,列方程求s.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】探索:小明和小亮在研究一個數學問題:已知AB∥CD,AB和CD都不經過點P,探索∠P與∠A,∠C的數量關系.
發(fā)現:在圖1中,小明和小亮都發(fā)現:∠APC=∠A+∠C;
小明是這樣證明的:過點P作PQ∥AB
∴∠APQ=∠A( )
∵PQ∥AB,AB∥CD.
∴PQ∥CD( )
∴∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
小亮是這樣證明的:過點作PQ∥AB∥CD.
∴∠APQ=∠A,∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
請在上面證明過程的過程的橫線上,填寫依據;兩人的證明過程中,完全正確的是 .
應用:
在圖2中,若∠A=120°,∠C=140°,則∠P的度數為 ;
在圖3中,若∠A=30°,∠C=70°,則∠P的度數為 ;
拓展:
在圖4中,探索∠P與∠A,∠C的數量關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一次數學課上,小明同學給小剛同學出了一道數形結合的綜合題,他是這樣出的:如圖,數軸上兩個動點 M,N 開始時所表示的數分別為﹣10,5,M,N 兩點各自以一定的速度在數軸上運動,且 M 點的運動速度為2個單位長度/s.
(1)M,N 兩點同時出發(fā)相向而行,在原點處相遇,求 N 點的運動速度.
(2)M,N 兩點按上面的各自速度同時出發(fā),向數軸正方向運動,幾秒時兩點相距6個單位長度?
(3)M,N 兩點按上面的各自速度同時出發(fā),向數軸負方向運動,與此同時,C 點從原點出發(fā)沿同方向運動,且在運動過程中,始終有 CN:CM=1:2.若干秒后,C 點在﹣12 處,求此時 N 點在數軸上的位置.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲,乙兩人同時各接受了600個零件的加工任務,甲比乙每分鐘加工的數量多,兩人同時開始加工,加工過程中其中一人因故障停止加工幾分鐘后又繼續(xù)按原速加工,直到他們完成任務,如圖表示甲比乙多加工的零件數量(個)與加工時間(分)之間的函數關系,觀察圖象解決下列問題:
(1)點B的坐標是________,B點表示的實際意義是___________ _____;
(2)求線段BC對應的函數關系式和D點坐標;
(3)乙在加工的過程中,多少分鐘時比甲少加工100個零件?
(4)為了使乙能與甲同時完成任務,現讓丙幫乙加工,直到完成.丙每分鐘能加工3個零件,并把丙加工的零件數記在乙的名下,問丙應在第多少分鐘時開始幫助乙?并在圖中用虛線畫出丙幫助后y與x之間的函數關系的圖象.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】補全下列各題解題過程.
如圖,EF∥AD,∠1 = ∠2,∠BAC = 70°,求 ∠AGD 的度數.
解:∵EF∥AD ( 已知 )
∴∠2 = ( )
又∵∠1=∠2 ( )
∴∠1=∠3 ( )
∴AB∥ ( )
∴∠BAC + = 180°( )
∵∠BAC = 70°(已知 )
∴∠AGD = _ .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,有若干個橫坐標分別為整數的點,其順序按圖中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),….根據這個規(guī)律,第2 025個點的坐標為________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,書桌上的一種新型臺歷和一塊主板AB、一個架板AC和環(huán)扣(不計寬度,記為點A)組成,其側面示意圖為△ABC,測得AC⊥BC,AB=5cm,AC=4cm,現為了書寫記事方便,須調整臺歷的擺放,移動點C至C′,當∠C′=30°時,求移動的距離即CC′的長(或用計算器計算,結果取整數,其中 =1.732, =4.583)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com