【題目】下列運(yùn)算中,正確的是( )
A.a3÷a2=a
B.a2+a2=a4
C.(ab)3=a4
D.2ab﹣b=2a

【答案】A
【解析】解:A、a3÷a2=a32=a,故本選項(xiàng)正確;
B、a2+a2=2a2 , 故本選項(xiàng)錯誤;
C、(ab)3=a3b3 , 故本選項(xiàng)錯誤;
D、2ab與b不是同類項(xiàng),不能直接合并,故本選項(xiàng)錯誤.
故選A.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解同底數(shù)冪的除法(同底數(shù)冪的除法法則:am÷an=am-n(a≠0,m,n都是正整數(shù),且m>n)).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線與x軸交于A(6,0)、B(,0)兩點(diǎn),與y軸交于點(diǎn)C,過拋物線上點(diǎn)M(1,3)作MN⊥x軸于點(diǎn)N,連接OM

(1)求此拋物線的解析式;

(2)如圖1,將△OMN沿x軸向右平移t個單位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′與直線AC分別交于點(diǎn)E、F

①當(dāng)點(diǎn)F為M′O′的中點(diǎn)時,求t的值;

②如圖2,若直線M′N′與拋物線相交于點(diǎn)G,過點(diǎn)G作GH∥M′O′交AC于點(diǎn)H,試確定線段EH是否存在最大值?若存在,求出它的最大值及此時t的值;若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將等邊△ABC繞點(diǎn)C順時針旋轉(zhuǎn)120°得到△EDC,連接AD,BD.則下列結(jié)論:

AC=AD;②BDAC;③四邊形ACED是菱形

其中正確的個數(shù)是(

A0 B1 C2 D3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】微電子技術(shù)的不斷進(jìn)步,使半導(dǎo)體材料的精細(xì)加工尺寸大幅度縮。撤N電子元件的面積大約為0.000000 7平方毫米,用科學(xué)記數(shù)法表示為平方毫米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)(4,﹣3)關(guān)于x軸對稱的點(diǎn)的坐標(biāo)是( )
A.(4,3)
B.(-4,3)
C.(3,-4)
D.(-3,-4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知海拔每升高1千米,溫度下降6℃,某時刻A地底面溫度為20℃,高出地面x千米處的溫度為y℃,則yx之間的函數(shù)關(guān)系為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,面積為6的平行四邊形紙片ABCD中,AB=3,∠BAD=45°,按下列步驟進(jìn)行裁剪和拼圖

第一步:如圖①,將平行四邊形紙片沿對角線BD剪開,得到△ABD和△BCD紙片,再將△ABD紙片沿AE剪開(EBD上任意一點(diǎn)),得到△ABE和△ADE紙片;

第二步:如圖②,將△ABE紙片平移至△DCF處,將△ADE紙片平移至△BCG處;

第三步:如圖③,將△DCF紙片翻轉(zhuǎn)過來使其背面朝上置于△PQM處(邊PQDC重合,△PQM和△DCFDC同側(cè)),將△BCG紙片翻轉(zhuǎn)過來使其背面朝上置于△PRN處,(邊PRBC重合,△PRN和△BCGBC同側(cè))

則由紙片拼成的五邊形PMQRN中,對角線MN長度的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果代數(shù)式x﹣4y的值為3,那么代數(shù)式2x﹣8y﹣1的值等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線與x軸交于A6,0)、B,0)兩點(diǎn),與y軸交于點(diǎn)C,過拋物線上點(diǎn)M1,3)作MNx軸于點(diǎn)N,連接OM

1)求此拋物線的解析式;

2)如圖1,將△OMN沿x軸向右平移t個單位(0t5)到△OMN′的位置,MN′、MO′與直線AC分別交于點(diǎn)EF

①當(dāng)點(diǎn)FMO′的中點(diǎn)時,求t的值;

②如圖2,若直線MN′與拋物線相交于點(diǎn)G,過點(diǎn)GGHMO′交AC于點(diǎn)H,試確定線段EH是否存在最大值?若存在,求出它的最大值及此時t的值;若不存在,請說明理由

查看答案和解析>>

同步練習(xí)冊答案