【題目】已知:如圖,△ABC中,ADBC,ABAE,點EAC的垂直平分線上.

(1)請問:ABBD、DC有何數(shù)量關(guān)系;并說明理由.

(2)如果∠B60°,證明:CD3BD

【答案】1AB+BD=CD;理由見解析;(2)證明見解析.

【解析】

1)由ADBC,BD=DE,點EAC的垂直平分線上,根據(jù)線段垂直平分線的性質(zhì),可得AE=EC,AB=AE,繼而證得AB+BD=AE+DE=DC

2)易得△ABE是等邊三角形,則可得△ABC是直角三角形,且∠BAD=C=30°,然后由含30°角的直角三角形的性質(zhì),證得結(jié)論.

解:(1AB+BD=DC.理由如下:

ADBCBD=DE,∴AB=AEBD=DE,

∵點EAC的垂直平分線上,∴AE=CE

AB+BD=AE+DE=DC

2)∵AB=AE,∠B=60°,∴△ABE是等邊三角形,∴∠AEB=B=BAE=60°

AE=EC,∴∠C=CAE=AEB=30°,∴∠BAC=90°,∠BAD=30°,

RtABC中,BC=2AB,在RtAABD中,AB=2BD,

BC=4BD

DC=3BD

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國南宋著名數(shù)學(xué)家秦九韶的著作《數(shù)書九章》里記載有這樣一道題:問有沙田一塊,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知為田幾何?這道題講的是:有一塊三角形沙田,三條邊長分別為5里,12里,13里,問這塊沙田面積有多大?題中是我國市制長度單位,1=500米,則該沙田的面積為( 。

A. 7.5平方千米 B. 15平方千米 C. 75平方千米 D. 750平方千米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,ABC為等邊三角形,AE=CD,AD、BE相交于點P,BQADQ,求證:PQ=BP.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某游樂場的摩天輪(圓形轉(zhuǎn)盤)上的點距離地面最大高度為160米,轉(zhuǎn)盤直徑為153米,旋轉(zhuǎn)一周約需30分鐘.某人從該摩天輪上到地面距離最近的點登艙,逆時針旋轉(zhuǎn)20分鐘,此時,他離地面的高度是米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為給人們的生活帶來方便,2017年興化市準(zhǔn)備在部分城區(qū)實施公共自行車免費服務(wù).圖1是公共自行車的實物圖,圖2是公共自行車的車架示意圖,點A,D,C,E在同一條直線上,CD=35cm,DF=24cm,AF=30cm,F(xiàn)D⊥AE于點D,座桿CE=15cm,且∠EAB=75°.

(1)求AD的長;
(2)求點E到AB的距離(結(jié)果保留整數(shù)).
(參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為豐富學(xué)生課外活動,某校積極開展社團活動,學(xué)生可根據(jù)自己的愛好選擇一項,已知該校開設(shè)的體育社團有:A:籃球,B:排球,C:足球,D:羽毛球,E:乒乓球.李老師對某年級同學(xué)選擇體育社團情況進行調(diào)查統(tǒng)計,制成了兩幅不完整的統(tǒng)計圖(如圖),則以下結(jié)論不正確的是(  。

A.選科目E的有5

B.選科目D的扇形圓心角是72°

C.選科目A的人數(shù)是選擇科目B的人數(shù)的兩倍

D.選科目B的扇形圓心角比選科目D的扇形圓心角的度數(shù)少21.6°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形的對角線相交于點,關(guān)于的對稱圖形為

1)求證:四邊形是菱形;

2)連接,交于點,連接,取的中點,連接

①根據(jù)題意補全圖形;

②若,請用等式表示線段、之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ab滿足,A(a0)、B(0b)

(1) 如圖,在x正半軸上有一點Cx,0).若ABC的面積大于6,請直接寫出x的取值范圍____________

(2)若在平面直角坐標(biāo)系第四象限上存在一點N,N的坐標(biāo)為(n,﹣n),滿足4SABN8,求n的取值范圍

(3)若在平面直角坐標(biāo)系上存在一點M,M的坐標(biāo)為(m,﹣2m),請通過計算說明:無論m取何值△ABM的面積為定值并求出這個值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A的坐標(biāo)為(0,1),點B是x軸正半軸上的一動點,以AB為邊作等腰Rt△ABC,使∠BAC=90°,設(shè)點B的橫坐標(biāo)為x,設(shè)點C的縱坐標(biāo)為y,能表示y與x的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案