如圖,在Rt△ABC中,AB=5,AC=12,∠A=90°.
(1)尺規(guī)作圖:作斜邊BC的垂直平分線;(不寫作法,保留作圖痕跡)
(2)設(shè)(1)中的垂直平分線交AC于E,交BC于D,求線段DE的長.
考點(diǎn):作圖—基本作圖,線段垂直平分線的性質(zhì)
專題:
分析:(1)利用線段垂直平分線的畫法得出即可;
(2)利用相似三角形的判定與性質(zhì)得出
CD
AC
=
DE
AB
,進(jìn)而求出即可.
解答:解:(1)如圖所示:MN即為所求;

(2)∵∠CDE=∠A=90°,
∠C=∠C,
∴△CDE∽△CAB,
CD
AC
=
DE
AB
,
∵在Rt△ABC中,AB=5,AC=12,∠A=90°,斜邊BC的垂直平分線為MN,
∴DC=6,
6
12
=
DE
5

解得:DE=2.5.
點(diǎn)評:此題主要考查了基本作圖以及線段垂直平分線的性質(zhì)和相似三角形的判定與性質(zhì),得出△CDE∽△CAB是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在梯形ABCD中,AD∥BC,DC⊥BC,AD=2,CD=4,tanB=
4
3
.點(diǎn)P在AB上,PM⊥BC于點(diǎn)M,PN⊥CD于點(diǎn)N,若點(diǎn)P從點(diǎn)B開始沿BA向點(diǎn)A運(yùn)動,
(1)求AB的長度;
(2)設(shè)BP=x,用含x的代數(shù)式表示矩形CMPN的面積S.
(3)當(dāng)點(diǎn)P移動到何位置時(shí),矩形CMPN的面積S取最大值,并求最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果3m表示向北走3m,那么-2m與6m分別表示( 。
A、向北走2m,向南走6m
B、向北走2m,向北走6m
C、向南走2m,向南走6m
D、向南走2m,向北走6m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程x2-kx+k-1=0.
(1)求證:當(dāng)k>2時(shí),方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)若二次函數(shù)y=x2-kx+k-1(k>2)的圖象與x軸交于A,B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C,且tan∠OAC=4,求該二次函數(shù)的解析式;
(3)已知點(diǎn)P(m,0)是x軸上的一個(gè)動點(diǎn),過點(diǎn)P作垂直于x軸的直線交(2)中的二次函數(shù)圖象于點(diǎn)M,交一次函數(shù)y=px+q的圖象于點(diǎn)N.若只有當(dāng)1<m<5時(shí),點(diǎn)M位于點(diǎn)N的下方,求一次函數(shù)y=px+q的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

小聰和小明沿同一條筆直的馬路同時(shí)從學(xué)校出發(fā)到某圖書館查閱資料,學(xué)校與圖書館的路程是4千米,小聰騎自行車,小明步行,當(dāng)小聰從原路回到學(xué)校時(shí),小明剛好到達(dá)圖書館,圖中折線O-A-B-C和線段OD分別表示兩人離學(xué)校的路程s(千米)與所經(jīng)過的時(shí)間t(分鐘)之間的函數(shù)關(guān)系,請根據(jù)圖象回答下列問題:
(1)小聰在圖書館查閱資料的時(shí)間為
 
分鐘,小聰返回學(xué)校的速度為
 
千米/分鐘;
(2)請你求出小明離開學(xué)校的路程s(千米)與所經(jīng)過的時(shí)間t(分鐘)之間的函數(shù)表達(dá)式;
(3)若設(shè)兩人在路上相距不超過0.4千米時(shí)稱為可以“互相望見”,則小聰和小明可以“互相望見”的時(shí)間共有多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

OB、OC是∠AOD內(nèi)的任意兩條射線,OM平分∠AOB,ON平分∠COD.若OA、OB、OC、OD按順時(shí)針方向排列,請?zhí)顚懴卤恚⒆C明你的結(jié)論:
∠MON的度數(shù) 40° 50° 60° m
∠BOC的度數(shù) 30° 40° 50° n
∠AOD的度數(shù)
 
 
 
 
 
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:2x=8y+1,9y=3x-9,求
1
3
x+
1
2
y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是邊長為a的等邊三角形,D是BC邊的中點(diǎn),DE⊥AC于E,則CE的長為( 。
A、
1
4
a
B、
1
3
a
C、
1
2
a
D、a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列四組線段中,可以構(gòu)成直角三角形的是( 。
A、1.5,2,2.5
B、4,5,6
C、2,3,4
D、1,
2
,3

查看答案和解析>>

同步練習(xí)冊答案