【題目】如圖,在△ABC中,AB=5,AC=3,BC=4,將△ABCA逆時針方向旋轉40°得到△ADE,點B經(jīng)過的路徑為弧BD,是圖中陰影部分的面積為( 。

A. π﹣6 B. π C. π﹣3 D.

【答案】B

【解析】

根據(jù)AB=5,AC=3,BC=4和勾股定理的逆定理判斷三角形的形狀,根據(jù)旋轉的性質(zhì)得到AED的面積=ABC的面積,得到陰影部分的面積=扇形ADB的面積,根據(jù)扇形面積公式計算即可.

解:∵AB=5,AC=3,BC=4,

∴△ABC為直角三角形,

由題意得,AED的面積=ABC的面積,

由圖形可知,陰影部分的面積=AED的面積+扇形ADB的面積﹣ABC的面積,

∴陰影部分的面積=扇形ADB的面積=

故選:B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y=-2x+4與x軸、y軸分別交于點A、C,以OA、OC為邊在第一象限內(nèi)作長方形OABC

(1)求點A、C的坐標;

(2)將ABC對折,使得點A的與點C重合,折痕交AB于點D,求直線CD的解析式(圖);

(3)在坐標平面內(nèi),是否存在點P(除點B外),使得APC與ABC全等?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,D為三角形內(nèi)一點,且△DBC為等邊三角形.

1)求證:直線AD垂直平分BC

2)以AB為一邊,在AB的右側畫等邊△ABE,連接DE,試判斷以DA,DB,DE三條線段是否能構成直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以正方形ABCD的邊AD作等邊ADE,則∠BEC的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:在四邊形ABFC中,=90的垂直平分線EFBC于點D,AB于點E,CF=AE

(1)試探究,四邊形BECF是什么特殊的四邊形;

(2)的大小滿足什么條件時,四邊形BECF是正方形?請回答并證明你的結論.

(特別提醒:表示角最好用數(shù)字)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD是⊙O的直徑,AB為⊙O的弦,OPAD,OPAB的延長線交于點P,過B點的切線交OP于點C.

(1)求證:∠CBP=ADB.

(2)若OA=2,AB=1,求線段BP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在ABC中,∠BAC=90°,AB=AC,點DAC上,點EBA的延長線上,BDCE相交于點F, BD=CE.

1)求證:BFCE.

2)如圖2,連結AF ,證明AF平分∠BFE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線與直線相交于點.

(1),的值;

(2)垂直于軸的直線與直線,以分別交于點,,若線段長為,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,拋物線yax2bxcx軸交于點A(2,0)B(4,0),且過點C(0,4)

(1)求出拋物線的表達式和頂點坐標;

(2)請你求出拋物線向左平移3個單位長度,再向上平移1.5個單位長度后拋物線的表達式.

查看答案和解析>>

同步練習冊答案