【題目】如圖,ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別是A33),B1,1),C4,–1).

1)直接寫(xiě)出點(diǎn)AB、C關(guān)于x軸對(duì)稱(chēng)的點(diǎn)A1、B1、C1的坐標(biāo);A1__________)、B1__________)、C1__________).

2)在圖中作出ABC關(guān)于y軸對(duì)稱(chēng)的圖形A2B2C2

3)求ABC的面積.

【答案】(1)3,﹣3,1,﹣1,4,1;(2)見(jiàn)解析;(3)5.

【解析】

1)由關(guān)于x軸對(duì)稱(chēng)的點(diǎn)的橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù)可得;

2)分別作出三個(gè)頂點(diǎn)關(guān)于y軸的對(duì)稱(chēng)點(diǎn),再首尾順次連接即可得;

3)利用割補(bǔ)法求解可得.

解:(1)∵點(diǎn)A3,3),B1,1),C4,﹣1).

∴點(diǎn)A關(guān)于x軸的對(duì)稱(chēng)點(diǎn)A13,﹣3),B關(guān)于x軸的對(duì)稱(chēng)點(diǎn)B11,﹣1),C關(guān)于x軸的對(duì)稱(chēng)點(diǎn)C14,1),

故答案為:3,﹣31,﹣1,4,1;

2)如圖所示,即為所求.

3ABC的面積為3×4×2×2×2×3×1×45

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形AOCB的邊長(zhǎng)為4,反比例函數(shù)的圖象過(guò)點(diǎn)E(3,4).

(1)求反比例函數(shù)的解析式;

(2)反比例函數(shù)的圖象與線段BC交于點(diǎn)D,直線過(guò)點(diǎn)D,與線段AB相交于點(diǎn)F,求點(diǎn)F的坐標(biāo);

(3)連接OF,OE,探究AOFEOC的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC的三個(gè)頂點(diǎn)分別為A(1,2),B(4,2),C(4,4).若反比例函數(shù)y= 在第一象限內(nèi)的圖象與△ABC有交點(diǎn),則k的取值范圍是(
A.1≤k≤4
B.2≤k≤8
C.2≤k≤16
D.8≤k≤16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】求證:有兩邊和第三邊上的中線對(duì)應(yīng)相等的兩個(gè)三角形相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若數(shù)a使得關(guān)于x的不等式組,有且僅有四個(gè)整數(shù)解,且使關(guān)于y的分式方程1有整數(shù)解,則所有滿(mǎn)足條件的整數(shù)a的值之和是( 。

A. 3B. 2C. 2D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD,BF平分∠ABE,DF平分∠CDE,BFD=35°,那么∠BED的度數(shù)為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A(﹣4n),B2,﹣4)是一次函數(shù)ykx+b的圖象和反比例函數(shù)y的圖象的兩個(gè)交點(diǎn).

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)求直線ABx軸的交點(diǎn)C的坐標(biāo)及△AOB的面積;

3)直接寫(xiě)出一次函數(shù)的值小于反比例函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,過(guò)點(diǎn)C的直線MN∥AB,D為AB邊上
一點(diǎn),過(guò)點(diǎn)D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE.

(1)求證:CE=AD;
(2)當(dāng)D在AB中點(diǎn)時(shí).
①求證:四邊形BECD是菱形;
②當(dāng)∠A為多少度時(shí),四邊形BECD是正方形?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)問(wèn)題提出:如圖已知直線OA的解析式是y2x,OCOA,求直線OC的函數(shù)解析式.

甲同學(xué)提出了他的想法:在直線y2x上取一點(diǎn)M,過(guò)Mx軸的垂線,垂足為D設(shè)點(diǎn)M的橫坐標(biāo)為m,則點(diǎn)M的縱坐標(biāo)為2m.即ODm,MD2m,然后在OC上截取ONOM,過(guò)Nx軸的垂線垂足為B.則點(diǎn)N的坐標(biāo)為   ,直線OC的解析式為   

2)拓展:已知直線OA的解析式是ykxOCOA,求直線OC的函數(shù)解析式.

3)應(yīng)用:直接寫(xiě)出經(jīng)過(guò)P23),且垂直于直線y=﹣x+2的直線解析式   

查看答案和解析>>

同步練習(xí)冊(cè)答案