已知:如圖,AC=DC,∠1=∠2,請(qǐng)?zhí)砑右粋(gè)已知條件:________,使△ABC≌△DEC.

BC=CE
分析:已知給出了∠1=∠2,可得三角形中一對(duì)應(yīng)角相等,又有一邊對(duì)應(yīng)相等,根據(jù)邊角邊判定定理,補(bǔ)充BC=AC可得△ABC≌△DEC答案可得.
解答:解:∵∠1=∠2,
∴∠BCA=∠ECD,
又AC=DC,添加BC=CE,
∴△ABC≌△DEC.
故填BC=CE.
點(diǎn)評(píng):本題考查三角形全等的判定方法;判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加時(shí)注意:AAA、SSA不能判定兩個(gè)三角形全等,不能添加,根據(jù)已知結(jié)合圖形及判定方法選擇條件是正確解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

29、已知:如圖,AC=BD,DF=CE,∠ECB=∠FDA.求證:AF=BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

16、已知:如圖,AC=DF,AC∥FD,AE=DB,則根據(jù)
SAS
(填上SSS、SAS、ASA或AAS)可得△ABC≌△DEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,AC是⊙O的直徑,AB和⊙O相交于E,BC和⊙O相切于C,D在BC上,DE是⊙O的切線,E精英家教網(wǎng)是切點(diǎn),
求證:(1)OD∥AB;
(2)2DE2=BE•OD;
(3)設(shè)BE=2,∠ODE=a,則cos2a=
1OD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

12、已知:如圖,AC、BD交于O點(diǎn),OA=OC,OB=OD、則不正確的結(jié)果是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,AC平分∠BAD,CE⊥AB于E點(diǎn),CF⊥AD于F點(diǎn),在AB上有一點(diǎn)M,且CM=CD.
(1)請(qǐng)你用尺規(guī)作出點(diǎn)M的位置,
(2)若AF=12,DF=4,求AM的長(zhǎng),
(3)試說(shuō)明∠CDA與∠CMA的關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案