【題目】如圖,已知二次函數(shù) 的圖像經(jīng)過點(diǎn)A(-1,-1)和點(diǎn)B(3,-9).
(1)求該二次函數(shù)的表達(dá)式;
(2)寫出該拋物線的對(duì)稱軸及頂點(diǎn)坐標(biāo);
(3)點(diǎn)P(m , m)與點(diǎn)Q均在該函數(shù)圖像上(其中m>0),且這兩點(diǎn)關(guān)于拋物線的對(duì)稱軸對(duì)稱,求m的值及點(diǎn)Q 到x軸的距離.
【答案】
(1)解:將A(﹣1,﹣1)和點(diǎn)B(3,﹣9)代入y=ax2﹣4x+c,
得 解得 ,
所以二次函數(shù)的表達(dá)式為y=x2﹣4x﹣6
(2)解:由y=x2﹣4x﹣6=(x﹣2)2﹣10可知:
對(duì)稱軸為x=2;頂點(diǎn)坐標(biāo)為(2,﹣10)
(3)解:將P(m,m)坐標(biāo)代入y=x2﹣4x﹣6,得m=m2﹣4m﹣6.
解得m1=﹣1,m2=6.
因?yàn)閙>0,所以m=﹣1不合題意,舍去.所以m=6,
所以P點(diǎn)坐標(biāo)為(6,6);
因?yàn)辄c(diǎn)P與點(diǎn)Q關(guān)于對(duì)稱軸x=2對(duì)稱,所以點(diǎn)Q到x軸的距離為46.
【解析】(1)利用待定系數(shù)法將點(diǎn)A、點(diǎn)B的坐標(biāo)代入函數(shù)解析式即可求出結(jié)果。
(2)利用配方法將函數(shù)解析式化成頂點(diǎn)式,即可求出結(jié)果。
(3)將點(diǎn)P的坐標(biāo)代入函數(shù)解析式,得出關(guān)于m的一元二次方程,解方程求解,根據(jù)題意確定m的值,再根據(jù)二次函數(shù)的對(duì)稱性求出點(diǎn)Q的坐標(biāo)。
【考點(diǎn)精析】根據(jù)題目的已知條件,利用二次函數(shù)的性質(zhì)的相關(guān)知識(shí)可以得到問題的答案,需要掌握增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,請(qǐng)證明∠A+∠B+∠C=180°
(2)如圖的圖形我們把它稱為“8字形”,請(qǐng)證明∠A+∠B=∠C+∠D
(3)如圖,E在DC的延長(zhǎng)線上,AP平分∠BAD,CP平分∠BCE,猜想∠P與∠B、∠D之間的關(guān)系,并證明
(4)如圖,AB∥CD,PA平分∠BAC,PC平分∠ACD,過點(diǎn)P作PM、PE交CD于M,交AB于E,則①∠1+∠2+∠3+∠4不變;②∠3+∠4﹣∠1﹣∠2不變,選擇正確的并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,O為BC邊上一點(diǎn),E為AC邊上一點(diǎn),且∠ADE=60°,BD=3.CE=2,則AB的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,點(diǎn)M在⊙O上,MD恰好經(jīng)過圓心O,連接MB.
(1)若CD=16,BE=4,求⊙O的直徑;
(2)若∠M=∠D,求∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果批發(fā)商銷售每箱進(jìn)價(jià)為40元的蘋果,物價(jià)部門規(guī)定每箱售價(jià)不得高于55元,市場(chǎng)調(diào)查發(fā)現(xiàn),若每箱以50元的價(jià)格調(diào)查,平均每天銷售90箱,價(jià)格每提高1元,平均每天少銷售3箱.
(1)求平均每天銷售量y(箱)與銷售價(jià)x(元/箱)之間的函數(shù)關(guān)系式.
(2)求該批發(fā)商平均每天的銷售利潤(rùn)w(元)與銷售價(jià)x(元/箱)之間的函數(shù)關(guān)系式.
(3)當(dāng)每箱蘋果的銷售價(jià)為多少元時(shí),可以獲得最大利潤(rùn)?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+3x+4與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D在拋物線上且橫坐標(biāo)為3.
(1)求A、B、C、D的坐標(biāo);
(2)求∠BCD的度數(shù);
(3)求tan∠DBC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某居民小區(qū)為了綠化小區(qū)環(huán)境,建設(shè)和諧家園,準(zhǔn)備將一塊周長(zhǎng)為76米的長(zhǎng)方形空地,設(shè)計(jì)成長(zhǎng)和寬分別相等的9塊小長(zhǎng)方形,如圖所示,計(jì)劃在空地上種上各種花卉,經(jīng)市場(chǎng)預(yù)測(cè),綠化每平方米空地造價(jià)210元,請(qǐng)計(jì)算,要完成這塊綠化工程,預(yù)計(jì)花費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,若,將點(diǎn)在內(nèi)部,∠,∠,∠滿足的數(shù)量關(guān)系是 ,并說明理由.
(2)在如圖1中,將直線繞點(diǎn)逆時(shí)針方向旋轉(zhuǎn)一定角度交直線于點(diǎn),如圖2,利用(1)中的結(jié)論(可以直接套用),求∠﹑∠﹑∠﹑∠之間有何數(shù)量關(guān)系?
(3)科技活動(dòng)課上,雨軒同學(xué)制作了一個(gè)圖(3)的“飛旋鏢”,經(jīng)測(cè)量發(fā)現(xiàn)∠=°,∠=°,則∠與∠的數(shù)量關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、B在反比例函數(shù) 的圖象上,且點(diǎn)A、B的橫坐標(biāo)分別為a、2a(a>0),AC⊥x軸,垂足為C,且△AOC的面積為2,
(1)求該反比例函數(shù)的解析式;
(2)求△AOB的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com